
37335 Differential Equations.

Tutorial Nine Solutions.

Question One.

We have the function f(x) = x(x + 1) = x2 + x,−π < x < π and
f(x+ 2π) = f(x). Then

the Fourier coefficients are the sum of the coefficients for f(x) = x2

and g(x) = x. These were calculated in lectures. So the Fourier series
is

f(x) =
π2

3
+
∞∑
n=1

(
4(−1)n

n2
cos(nx) + 2

(−1)n+1

n
sin(nx)

)
.

Question Two.

We have f(x) = 2x2 − 3x + 2 for −1 < x < 1 with f(x + 2) = f(x)
for all x. Then

a0 =
1

2

∫ 1

−1
f(x)dx =

8

3
,

an =

∫ 1

−1
(2x2 − 3x+ 2) cos(nπx)dx =

8(−1)n

π2n2
,

bn =

∫ 1

−1
(2x2 − 3x+ 2) sin(nπx)dx =

6(−1)n

πn
.

So

f(x) =
8

3
+
∞∑
n=1

(
8(−1)n

π2n2
cos(nπx) +

6(−1)n

πn
sin(nπx)

)
.

Question Three.

We expand f(x) = sin x as a cosine series on the interval [0, π). Then

a0 =
1

π

∫ π

0

sinxdx =
2

π
,

a1 =
2

π

∫ π

0

sinx cosxdx =
1

π

∫ π

0

sin(2x)dx

=
1

π

[
−1

2
cos(2x)

]π
0

= 0,

an =
2

π

∫ π

0

sinx cos(nx)dx =
2

π

1 + (−1)n

1− n2
, n 6= 1.

1



2

Thus

sinx =
2

π
+
∞∑
n=2

2

π

1 + (−1)n

1− n2
cos(nx),

on [0, π).

Question Four.

Now we find the sine series for cosx on [0, π). By similar calculations
we find b1 = 0 and

bn =
2n(1 + (−1)n)

π(n2 − 1)
.

Whence

cosx =
∞∑
n=2

2n(1 + (−1)n)

π(n2 − 1)
sin(nx).

The function has periodicity 2π

Question Five.

We have f(x) = 1− x, 0 ≤ x < 1. The sine coefficients are bn =
2

nπ
.

So

f(x) =
∞∑
n=1

2

nπ
sin(nπx).

For the cosine series a0 = 1
2

and

an = 2
1− (−1)n

π2n2
.

Hence

f(x) =
1

2
+
∞∑
n=1

2
1− (−1)n

π2n2
cos(nπx).

The periodicity is 2.

Question Six.

We have f(x) = x− [x] on −2 < x < 2. Now f(−x) = −x− [−x] =
−x + [x] = −(x − [x]) = −f(x). So f is odd. This means that the
cosine terms are zero. Between -2 and -1 let f(x) = Ax + B. Then
f(−2) = −2A+B == −1 and f(−1) = −A+B == 0. So f(x) = x+1.
Similarly between 1 and 2 f(x) = x−1. Since x−[x] = x for x ∈ (−1, 1)
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this means

bn =
1

2

∫ 2

−2
(x− [x]) sin

(nπx
2

)
dx

=
1

2

∫ −1
−2

(x+ 1) sin
(nπx

2

)
dx+

1

2

∫ 1

−1
(x− [x]) sin

(nπx
2

)
dx

+
1

2

∫ 2

1

(x− 1) sin
(nπx

2

)
dx

=
1

2

∫ −1
−2

(x+ 1) sin
(nπx

2

)
dx+

1

2

∫ 1

−1
x sin

(nπx
2

)
dx

+
1

2

∫ 2

1

(x− 1) sin
(nπx

2

)
dx

=
4

πn

(
(−1)n+1 − cos

(πn
2

))
.

Thus

x− [x] =
∞∑
n=1

4

πn

(
(−1)n+1 − cos

(πn
2

))
sin
(nπx

2

)
.

Question Seven.

We have f(x) = x. So for n 6= 0,

f̂(n) =

∫ 1

0

xe−2πinxdx

=
i

2πn
.

We also have

f̂(0) =

∫ 1

0

xdx =
1

2
.

Whence

x =
1

2
+
∑
n6=0

i

2πn
e2πinx.

Question Eight.

We have ut = 1
2
uxx, 0 ≤ x ≤ 1, t > 0 with ux(0, 1) = ux(1, t) = 0

and u(x, 0) = f(x). We let u(x, t) = X(x)T (t). As in the case from
lectures we obtain

X ′′

X
= 2

T ′

T
= λ.

We also have X ′(0) = X ′(1) = 0. Then we suppose λ = k2 > 0. This
gives

X(x) = Aekx +Be−kx.
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X ′(0) = kA−kB = 0, and X ′(1) = kAek−kBe−k = 0 gives A = B = 0,
so λ cannot be positive. Taking λ = 0 gives X(x) = Ax + B and
X ′(0) = A = 0. This gives X = B. This is not much use. Take
λ = −k2 to get

X(x) = A cos(kx) +B sin(kx).

We then have

X ′(0) = −kA sin(k0) + kB cos(0) = 0

or B = 0. The condition X ′(1) = 0 gives X ′(1) = −kA sin k = 0 or
k = nπ. Hence λ = −n2π2, n = 0, 1, 2, ...

X(x) = A cos(nπx).

Solving for t gives T (t) = Ce−2n
2π2t. So we have solutions

un(x, t) = An cos(nπx)e−2n
2π2t.

We then form a solution

u(x, t) =
∞∑
n=0

An cos(nπx)e−2n
2π2t.

The condition u(x, 0) = f(x) gives

An = 2
∫ 1

0
f(y) cos(nπy)dy for n > 0 and A0 =

∫ 1

0
f(x)dx.


