37335 Differential Equations.

Tutorial Eight Solutions.
Question One.

(a)
We have

2" +4x = 5e”!

z(0) = 2,2"(0) = 3.
Take the Laplace transform of both sides to get
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Here X (t) = [7 x(t)e™*'dt. So we see that
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We take the inverse Laplace transform to get

z(t) = e + cos(2t) + 2sin(2t).

X(s) =

(b) We solve the initial value problem
"+ 22"+ x = 4sint
z(0) = =2, 2/(0) = 1.

Laplace transforming gives
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Taking the inverse Laplace transform gives x(t) = te™" — 2 cost.
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(c) We solve the problem
2" + 42’ + bx = 25¢,

subject to z(0) = 0,2'(0) = 2.
We take the Laplace transform of both sides. This gives

25
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So that
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Now
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Now we use the result that L™ (F(s+a)) = e"*L71(F(s)). So that
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Similarly
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Since L(t) = 1/s* and £(1) = 1/s we therefore have

z(t) = be *'sint + 4e > cost + 5t — 4.

Question Two.
To solve the problem

" +x = f(t),z(0) = 2'(0) =0,

where



we take the Laplace transform. We have
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So we have
1—e*
(2 + D)X(s) = ———,
or

Now by partial fractions
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Thus

and
X(t)=t—sint— ((t—1) —sin(t —1))H(t — 1).

H is the Heaviside step function.

Question Three.
We have the problem

where



Now
/ f(t)e*—stdt:/ (t —1)e *tdt
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(s* = 1)X(s) — s2(0) — 2/(0) = R
Hence
X(s) = s . e

s2—1  s2(s2—1)

partial fractions gives £7! [5*5] = cosht.
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Thus
L L?l—l - 8—12} =sinht — t.
Hence

x(t) = cosht+ H(t — 1)(sinh(t — 1) — (t — 1)).

Question Four.

We obtain a solution to

" +x = f(t),z(0)=0,2(0) =1,
where f possesses a Laplace transform F'(s). We see that
(s> + 1) X (s) — s2(0) — 2/(0) = F(s).

Hence
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By the convolution theorem
t
x(t) = sint + / f(t — ) sinudu.
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Question Five. We have
¥ +2r—-2y=0
—x 4y +y=2¢
with z(0) = 0,y(0) = 1. We Laplace transform to obtain
(s+2)X(s) —2Y(s)=0
2

—X(s)+ (s+1)Y(s) —y(0) = 1



We can write this as

(5 )G = ()
So we have
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We therefore have
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Inverting the Laplace transform we have
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Question Six.

We have uy + sint = 0, t > 0, with u(z,0) = = and u(0,t) = 0.
Taking the Laplace transform in x to get

O 1
a/o Ute . = 0.
This is
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Integrating gives
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Since u(0,t) = 0 we have U(0,t) = 0. This C' = 0. Now
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Hence we find on inverting the Laplace transform that u(z,t) = x cost.

Question Seven.

We solve the wave equation with a source term
Pu  10%
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subject to u(z,0) = 0,u(z,0) = 0,u(0,t) = u(1,t) = 0. (Note the typo
in the question.) Take the Laplace transform in ¢ to obtain
’U s> k
— = —=U — —sin(mx).
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We solve the Homogenous problem to obtain

Up(z,s) = Acosh (%) + Bsinh (%) :

—ksin(rz), 0 <z <1, t>0,

Now we try undetermined coefficients. Let U, = a cos(rx) + bsin(rx)
Then

r . r T 2 2 .
U, = —arsin(rx) 4 br cos(mx), U, = —ar* cos(mx) — br” sin(mx).
2
—am? cos(mx) — br?sin(wr) = 8—2(a cos(mx) + bsin(mz)) — — sin(7z).
c s

Hence a = 0, —b(7* + %) = —£. Thus
b= ——.

s(c?m? + 52)

Thus we have a solution of the inhomogenous ODE given by
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_ The conditions u(0,#) = 0 and u(1,#) = 0 give U(0,s) = 0 and

U(1,s) = 0. Now U(0,s) = A, so A= 0. U(1,s) = Bsinh (£) = 0. So

B =0. Thus

U(w,s) = Acosh (ﬁ) + Bsinh <

c

sin(mx).
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We take the inverse Laplace transform to get

sin(mzx).

u(z,t) = %(1 — cos(mct)) sin(mx).



