
37335 Differential Equations.

Tutorial Five Solutions.

Series Solutions. Regular Singular Points.

Question One.

(a) x2y′′ − 5xy′ + (3− x)y = 0. We let y =
∑∞

n=0 anx
n+s as usual and

then we have

y′ =
∞∑
n=0

(n+ s)anx
n+s−1

y′′ =
∞∑
n=0

(n+ s)(n+ s− 1)anx
n+s−2.

Substituting into the DE gives

x2
∞∑
n=0

(n+ s)(n+ s− 1)anx
n+s−2 − 5x

∞∑
n=0

(n+ s)anx
n+s−1 + (3− x)

∞∑
n=0

anx
n+s

=
∞∑
n=0

(n+ s)(n+ s− 1)anx
n+s −

∞∑
n=0

5(n+ s)anx
n+s +

∞∑
n=0

3anx
n+s

−
∞∑
n=0

anx
n+s+1 = (s(s− 1)− 5s+ 3)a0x

s +
∞∑
n=1

(n+ s)(n+ s− 1)anx
n+s

−
∞∑
n=1

5(n+ s)anx
n+s +

∞∑
n=1

3anx
n+s −

∞∑
n=0

anx
n+s+1

= (s2 − 6s+ 3)a0x
s +

∞∑
n=1

[(n+ s)(n+ s− 1)− 5(n+ s) + 3]anx
n+s

−
∞∑
n=1

an−1x
n+s = 0

So we have s2−6s+3 = 0. This gives s = 3±
√

6. Let s1 = 3+
√

6 and
s2 = 3−

√
6. These are not particularly pleasant but it is not difficult

to handle them. This is because the recurrence relation will factorise
in the same way. Clearly we have

((n+ s)(n+ s− 1)− 5(n+ s) + 3)an = an−1, n ≥ 1

or

an =
an−1

(n+ s)(n+ s− 1)− 5(n+ s) + 3
=

an−1
(n+ s− s1)(n+ s− s2)

.

If we take s = s1 Then we have

an =
an−1

n(n+ 2
√

6)
, n ≥ 1.
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The n term will give us an n! in the denominator. We generate terms
in the usual manner to obtain

a1 =
a0

1(1 + 2
√

6)
, a2 =

a0

1× 2(1 + 2
√

6)(2 + 2
√

6)
,

a3 =
a0

1× 2× 3(1 + 2
√

6)(2 + 2
√

6)(3 + 2
√

6)
,

etc. We see that the general form is

an =
a0

n!(1 + 2
√

6) · · · (n+ 2
√

6)
.

This gives a solution

y = a0x
3+
√
6

∞∑
n=0

xn

n!(1 + 2
√

6) · · · (n+ 2
√

6)
.

This is a perfectly acceptable answer. However we can use the Gamma
function to simplify it. We recall that Γ(a + 1) = aΓ(a), Gamma(a +
2) = a(a+ 1)Γ(a), .... We let a0 = Γ(1 + 2

√
6). Then

(1 + 2
√

6) · · · (n+ 2
√

6)Γ(1 + 2
√

6) = Γ(n+ 1 + 2
√

6).

The solution is then

y = x3+
√
6

∞∑
n=0

xn

n!Γ(n+ 1 + 2
√

6)
.

You can easily check that taking s = s2 we obtain the second solution

y = x3−
√
6

∞∑
n=0

xn

n!Γ(n+ 1− 2
√

6)
.
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(b) For the equation 2x2y′′ + xy′ − (2x+ 1)y = 0 we have

2x2
∞∑
n=0

(n+ s)(n+ s− 1)anx
n+s−2 + x

∞∑
n=0

(n+ s)anx
n+s−1 − (2x+ 1)

∞∑
n=0

anx
n+s

=
∞∑
n=0

2(n+ s)(n+ s− 1)anx
n+s +

∞∑
n=0

(n+ s)anx
n+s −

∞∑
n=0

2anx
n+s+1

−
∞∑
n=0

anx
n+s+1 = (2s(s− 1) + s− 1)a0x

s +
∞∑
n=1

2(n+ s)(n+ s− 1)anx
n+s

+
∞∑
n=1

(n+ s)anx
n+s −

∞∑
n=1

anx
n+s −

∞∑
n=0

2anx
n+s+1

= (2s2 − s− 1)a0x
s +

∞∑
n=1

[2(n+ s)(n+ s− 1) + (n+ s)− 1]anx
n+s

−
∞∑
n=1

2an−1x
n+s = 0

So 2s2 − s− 1 = 0. This gives s = 1, s = −1/2 and

an =
2an−1

2(n+ s)(n+ s− 1) + (n+ s)− 1
, n ≥ 1.

If we take s = 1 we get

an =
2an−1

n(2n+ 3)
, n ≥ 1.

We then generate the coefficients as follows:

a1 =
2a0
1(5)

, a2 =
22a0

1× 2(5× 7)
, a3 =

23a0
1× 2× 3(5× 7× 9)

,

a4 =
24a0

4!(5× 7× 9× 11)
=

243!× 2× 4× 6× 8× 10a0
4!11!

= 3
295!a0
4!11!

.

We used here 2× 4× 6× 8× 10 = 25(1.2.3.4.5) = 255!.
In general we have

an = 3× 22n+1(n+ 1)!

n!(2n+ 3)!
.

This gives the solution

y = a0x

(
1 + 3×

∞∑
n=1

22n+1(n+ 1)!

n!(2n+ 3)!
xn

)
.

Note that we separated out the n = 0 term since our general formula
does not hold for n = 0, only n ≥ 1.
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For s = −1/2 we have

an =
2an−1

n(2n− 3)
, n ≥ 1.

We iterate as before and we have a1 = 2a0
1(−1) , a2 = 22a0

1×2((−1)(1)) , a3 =
23a0

1×2×3((−1)(1)(3) etc. The corresponding solution can be written

y = a0x
−1/2

(
1− 2x−

∞∑
n=2

22n−1(n− 1)!xn

n!(2n− 3)!

)
.

(c) The equation 2xy′′ + 3y′ − xy = 0 with
∑∞

n=0 anx
n+s becomes

2x
∞∑
n=0

(n+ s)(n+ s− 1)anx
n+s−2 + 3

∞∑
n=0

(n+ s)anx
n+s−1 − x

∞∑
n=0

anx
n+s

=
∞∑
n=0

2(n+ s)(n+ s− 1)anx
n+s−1 +

∞∑
n=0

3(n+ s)anx
n+s−1 −

∞∑
n=0

anx
n+s+1

= 2a0x
s−1(2s(s− 1) + 3s) + 2a1x

s(2(s+ 1)s+ 3(s+ 1))

+
∞∑
n=2

[2(n+ s)(n+ s− 1) + 3(n+ s)]anx
n+s−1 −

∞∑
n=0

anx
n+s+1

= 2a0x
s−1(2s(s− 1) + 3s) + 2a1x

s(2(s+ 1)s+ 3(s+ 1))

+
∞∑
n=2

[2(n+ s)(n+ s− 1) + 3(n+ s)]anx
n+s−1 −

∞∑
n=2

an−2x
n+s−1 = 0.

We will let a0 be nonzero and set a1 = 0. (You might like to check what
happens if you do it the other way round. You should get an answer
equivalent to this one). Set 2s2 + s = 0. Then s = 0 and s = −1/2 are
the values we need. We also have

an =
an−2

2(n+ s)(n+ s− 1) + 3(n+ s)
,

=
an−2

(n+ s)(2(n+ s− 1) + 3)
,

=
an−2

(n+ s)(2n+ 2s+ 1)
, n ≥ 2.

If we take s1 = 0 then we have

an =
an−2

n(2n+ 1)
, n ≥ 2.

Notice that if we take n = 3 we get a3 = a1
3(7)

= 0. Similarly a5 = 0, a7 =

0 etc. In general the odd coefficients a2n+1 = 0 are all zero. Now if we
take n = 2 we obtain a2 = a0

2×5 . For n = 4 we have a4 = a2
4×9 = a0

2×4(5×9) ,

a6 = a4
6×13 = a0

2×4×6(5×9×13) = a0
233!(5×9×13) .
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For the even coefficients we have

a2n =
a0

2nn!(5× · · · × (4n+ 1)
.

This holds for n ≥ 0. So we can write the solution as

y = a0x
s1

∞∑
n=0

x2n

2nn!(5× · · · × (4n+ 1))
= a0

∞∑
n=0

x2n

2nn!(5× · · · × (4n+ 1))
.

Now we take s2 = −1/2 and we get

an =
an−2

n(2n− 1)
, n ≥ 2.

We also find that the odd coefficients a2n+1 are all zero. Now take
n = 2 gives a2 = a0

2(3)
, a4 = a2

4×7 = a0
2×4(3×7) , then

a6 =
a0

2× 4× 6(3× 7× 11)
=

a0
233!(3× 7× 11)

.

For n ≥ 1 we have

a2n =
a0

2nn!(3× · · · × (4n− 1))
.

So the solution is

y = a0x
−1/2

(
1 +

∞∑
n=1

x2n

2nn!(3× · · · × (4n− 1))

)
.

(d) (2x2 − x3)y′′ + (7x − 6x2)y′ + (3 − 6x)y = 0 is a harder problem.
The point is that it is solved the same way. We put y =

∑∞
n=0 anx

n+s
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and

(2x2 − x3)
∞∑
n=0

(n+ s)(n+ s− 1)anx
n+s−2 + (7x− 6x2)

∞∑
n=0

(n+ s)anx
n+s−1

+ (3− 6x)
∞∑
n=0

anx
n+s =

∞∑
n=0

2(n+ s)(n+ s− 1)anx
n+s

−
∞∑
n=0

(n+ s)(n+ s− 1)anx
n+s+1 +

∞∑
n=0

7(n+ s)anx
n+s −

∞∑
n=0

6(n+ s)anx
n+s+1

+
∞∑
n=0

3anx
n+s −

∞∑
n=0

6anx
n+s+1

=
∞∑
n=0

[2(n+ s)(n+ s− 1) + 7(n+ s) + 3]anx
n+s

−
∞∑
n=0

[(n+ s)(n+ s− 1) + 6(n+ s) + 6]anx
n+s+1

= a0x
s(2s(s− 1) + 7s+ 3) +

∞∑
n=1

[2(n+ s)(n+ s− 1) + 7(n+ s) + 3]anx
n+s

−
∞∑
n=0

[(n+ s)(n+ s− 1) + 6(n+ s) + 6]anx
n+s+1

= a0x
s(2s2 + 5s+ 3) +

∞∑
n=1

[(2(n+ s)(n+ s− 1) + 7(n+ s) + 3)an

− ((n+ s− 2)(n+ s− 1) + 6(n+ s− 1) + 6)an−1]x
n+s = 0.

So we have 2s2 + 5s+ 3 = 0 which gives s = −1 and s = −3/2. We
also have

an =
((n+ s− 2)(n+ s− 1) + 6(n+ s− 1) + 6)an−1

(2(n+ s)(n+ s− 1) + 7(n+ s) + 3)
.

Taking s = −1 gives

an =
n(n+ 1)

n(2n+ 1)
an−1 =

n+ 1

2n+ 1
an−1.

So a1 = 2
3
a0, a2 = 3

5
a1 = 2×3

3×5a0, a3 = 4
7
a2 = 2×3×4

3×5×7a0. We then see that

an =
(n+ 1)!

1× 3× · · · × (2n+ 1)
a0 =

(1× 2× 4× · · · 2n)(n+ 1)!

(2n+ 1)!
a0

=
2nn!(n+ 1)!

(2n+ 1)!
a0.
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This gives the solution

y = a0x
−1

∞∑
n=0

2nn!(n+ 1)!

(2n+ 1)!
xn.

Taking s = −3/2 we have after some tedious algebra

an =
2n+ 1

4n
an−1.

Generating terms gives a1 = 3
4
a0, a2 = 5

421×2a0, a3 = 7
433
a0 = 1×3×5×7

433!
a0.

In general

an =
(2n+ 1)!

4n(1× 2× 4× · · · 2n)n!
a0

=
(2n+ 1)!

23n(n!)2
a0.

So we have a solution

y = a0x
−3/2

∞∑
n=0

(2n+ 1)!

23n(n!)2
xn.

(e) For (2x− 2x2)y′′ + (1 + x)y′ + 2y = 0 letting y =
∑∞

n=0 anx
n+s

(2x− 2x2)
∞∑
n=0

(n+ s)(n+ s− 1)anx
n+s−2 + (1 + x)

∞∑
n=0

(n+ s)anx
n+s−1

+ 2
∞∑
n=0

anx
n+s

=
∞∑
n=0

2(n+ s)(n+ s− 1)anx
n+s−1 −

∞∑
n=0

2(n+ s)(n+ s− 1)anx
n+s

+
∞∑
n=0

(n+ s)anx
n+s−1 +

∞∑
n=0

(n+ s)anx
n+s +

∞∑
n=0

2anx
n+s

=
∞∑
n=0

[2(n+ s)(n+ s− 1) + (n+ s)]anx
n+s−1

−
∞∑
n=0

[2(n+ s)(n+ s− 1)− (n+ s)− 2]anx
n+s
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= (2s(s− 1) + s)a0x
s−1 +

∞∑
n=1

[2(n+ s)(n+ s− 1) + (n+ s)]anx
n+s−1

−
∞∑
n=1

[2(n+ s− 1)(n+ s− 2)− (n+ s− 1)− 2]an−1x
n+s−1

= (2s2 − s)a0xs−1 +
∞∑
n=1

[(2(n+ s)(n+ s− 1) + (n+ s)) an

− (2(n+ s− 1)(n+ s− 2)− (n+ s− 1)− 2) an−1]x
n+s−1 = 0.

Hence s(2s− 1) = 0. So s = 0 and s = 1/2 and

an =
2(n+ s− 1)(n+ s− 2)− (n+ s− 1)− 2

2(n+ s)(n+ s− 1) + (n+ s)
an−1.

Taking s = 0 gives

an =
2n2 − 7n+ 3

n(2n− 1)
an−1.

It is easy to see that a1 = −2
1
a0 = −2a0. Then a2 = 2(2)2−14+3

2(3)
a1 =

−1
2
a1 = a0. Now a3 = 2(9)−21+3

3(6−1) a2 = 0. All other terms are zero. So the

solution corresponding to s = 0 is y = a0(1− 2x+ x2).
Taking s = 1/2 gives

an =
2n− 5

2n+ 1
an−1.

We find that a1 = −3
3
a0 = −a0, a2 = −1

5
a1 = 1

5
a0, a3 = 1

7
a2 = 1

1×5×7a0,

a4 = 3
5×7×9a0, a5 = 3.5

5.7.9.11
a0 It is not hard to see that for n ≥ 2 we

have

an =
1× 3× 5 · · · × (n+ 1)

3.5. · · · (2n+ 1)
a0.

Since this does not hold for the first two terms we separate those terms
out in the solution and write

y = a0x
1/2

(
1− x+

∞∑
n=2

1× 3× 5 · · · × (n+ 1)

3.5. · · · (2n+ 1)
xn

)
.

(f) Next we have x2(x+ 2)y′′−xy′+ (1 +x)y = 0. Proceeding as usual
gives
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x2(x+ 2)
∞∑
n=0

(n+ s)(n+ s− 1)anx
n+s−2 − x

∞∑
n=0

(n+ s)anx
n+s−1

+ (1 + x)
∞∑
n=0

anx
n+s

=
∞∑
n=0

(n+ s)(n+ s− 1)anx
n+s+1 +

∞∑
n=0

2(n+ s)(n+ s− 1)anx
n+s

−
∞∑
n=0

(n+ s)anx
n+s +

∞∑
n=0

anx
n+s +

∞∑
n=0

anx
n+s+1

=
∞∑
n=0

[(n+ s)(n+ s− 1) + 1]anx
n+s+1

+
∞∑
n=0

[2(n+ s)(n+ s− 1)− (n+ s) + 1]anx
n+s

= (2s(s− 1)− s+ 1)a0x
s +

∞∑
n=0

[(n+ s)(n+ s− 1) + 1]anx
n+s+1

+
∞∑
n=1

[2(n+ s)(n+ s− 1)− (n+ s) + 1]anx
n+s

= (2s2 − 3s+ 1)a0x
s +

∞∑
n=1

[(n+ s− 1)(n+ s− 2) + 1]an−1x
n+s

+
∞∑
n=1

[2(n+ s)(n+ s− 1)− (n+ s) + 1]anx
n+s

= (2s2 − 3s+ 1)a0x
s +

∞∑
n=1

([(n+ s− 1)(n+ s− 2) + 1]an−1

+ [2(n+ s)(n+ s− 1)− (n+ s) + 1]an)xn+s = 0.

This gives 2s2 − 3s+ 1 = 0 and s = 1, 1/2. Finally we have

an = − (n+ s− 1)(n+ s− 2) + 1

2(n+ s)(n+ s− 1)− (n+ s) + 1
an−1.

For s = 1 we obtain

an = −n
2 − n+ 1

n(2n+ 1)
an−1.

So a1 = −1
3
a0, a2 = − 3

2(5)
a1 = (−1)2 1×1

1×2(3×5)a0,

a3 = − 7

3(7)
a2 = (−1)3

1× 3× 5

1× 2× 3(3× 5× 7)
a0



10

In general

an = (−1)n
(2× 4 · · · × 2n)(1× 1× 3× · · · (n2 − n+ 1)

n!(2n+ 1)!
a0

= (−1)n
2nn!(1× 1× 3× · · · (n2 − n+ 1)

n!(2n+ 1)!
a0

= (−1)n
2n(1× 1× 3× · · · (n2 − n+ 1)

(2n+ 1)!
.

We then have

y = a0x

∞∑
n=0

(−1)n
2n(1× 1× 3× · · · (n2 − n+ 1)

(2n+ 1)!
xn.

For s = 1/2 we obtain

an =
4n2 − 8n+ 7

4n(2n− 1)
an−1

Then a1 = 3
4
a0, a2 = 3×7

422!(1×3)a0, a3 = 3×7×19
433!(1×3×5)a0 etc.

We find the expression

an =
2n−1(n− 1)!3× 7 · · · × (4n2 − 8n+ 7)

4nn!(2n− 1)!

=
1× 3× 7 · · · × (4n2 − 8n+ 7)

2n+1n(2n− 1)!
a0, n ≥ 1,

so that

y = a0x
1/2

(
1 +

∞∑
n=1

1× 3× 7 · · · × (4n2 − 8n+ 7)

2n+1n(2n− 1)!
xn

)
.

(g) The equation is 3x2y′′ + 8xy′ + (x− 2)y = 0.

3x2
∞∑
n=0

(n+ s)(n+ s− 1)anx
n+s−2 + 8x

∞∑
n=0

(n+ s)anx
n+s−1

+ (x− 2)
∞∑
n=0

anx
n+s

=
∞∑
n=0

3(n+ s)(n+ s− 1)anx
n+s +

∞∑
n=0

8(n+ s)anx
n+s +

∞∑
n=0

anx
n+s+1

−
∞∑
n=0

2anx
n+s

=
∞∑
n=0

[3(n+ s)(n+ s− 1) + 8(n+ s)− 2]anx
n+s +

∞∑
n=0

anx
n+s+1
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= (3s2 + 5s− 2)a0x
s +

∞∑
n=1

[3(n+ s)(n+ s− 1) + 8(n+ s)− 2]anx
n+s

+
∞∑
n=0

anx
n+s+1

= (3s2 + 5s− 2)a0x
s

+
∞∑
n=1

([3(n+ s)(n+ s− 1) + 8(n+ s)− 2]an + an−1)x
n+s = 0.

So 3s2 + 5s− 2 = 0 and this gives s = 1/3 and s = −2. We also have

an =
−an−1

3(n+ s)(n+ s− 1) + 8(n+ s)− 2
, n ≥ 1.

The value s = −2 gives

an =
−an−1

n(3n− 7)
an−1.

We find after the usual calculations

an =
(−1)n

n!((−4)(−1)(2)(5) · · · (3n− 7)
a0

and

y = a0x
−2

∞∑
n=0

(−1)n

n!((−4)(−1)(2)(5) · · · (3n− 7)
xn.

For s = 1/3 we have

an =
−an−1

n(3n+ 7)
an−1.

The solution is

y = a0x
1/3

∞∑
n=0

(−1)n

n!(1× 10× · · · (3n+ 7)
xn.

(h) We have x2y′′ − x(1 + x)y′ + y = 0. So

x2
∞∑
n=0

(n+ s)(n+ s− 1)anx
n+s−2 − x(1 + x)

∞∑
n=0

(n+ s)anx
n+s−1

+
∞∑
n=0

anx
n+s

=
∞∑
n=0

((n+ s)(n+ s− 1)− (n+ s) + 1)anx
n+s −

∞∑
n=0

(n+ s)anx
n+s+1
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= (s− 1)2a0x
s

+
∞∑
n=1

[((n+ s)(n+ s− 1)− (n+ s) + 1)an − (n+ s− 1)an−1]x
n+s = 0.

So we have s = 1. And

an =
n+ s− 1

(n+ s)(n+ s− 1)− (n+ s) + 1
an−1 (0.1)

=
1

(n+ s− 1)
an−1. (0.2)

Clearly taking s = 1 gives

an =
1

n
an−1.

So we immediately have an = a0
n!

and

y = a0x
∞∑
n=0

xn

n!
= a0xe

x.

We can obtain a second solution using this solution in two different
ways. We will use the Frobenius method here. Iterating we see that

an(s) =
a0

s(s+ 1)(s+ 2) · · · (n+ s− 1)
.

Take logs to get

ln(an(s)) = ln a0 − ln s− ln(s+ 1)− · · · ln(n+ s− 1).

Differentiate with respect to s to obtain

a′n(s)

an(s)
= −1

s
− 1

1 + s
− · · · − 1

n+ s− 1
.

If we take s = 1 we obtain

a′n(1) = an(1)(−
∑

k = 1n
1

k
= −Hn

a0
n!

since an(1) = a0
n!

and we have set Hn =
∑n

k=1
1
k
. So from the formula

in the notes the second solution is

y = aoxe
x − x

∞∑
n=1

Hn
a0
n!
xn.

Question Two

Solving Differential Equations in Terms of Bessel Functions.

(a) We have y′′ + x2y = 0. Multiply by x2 to get x2y′′ + x4y = 0.
Compare with the form x2y′′+(1−2s)xy′+(s2−α2r2 +a2r2x2r)y = 0.
We have 1 − 2s = 0. So s = 1/2. Now a2r2x2r = x4 giving 2r = 4, so
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r = 2. 4a2 = 1 so a = 1/2. Finally s2 − α2r2 = 1
4
− 4α2 = 0. Thus

α = ±1
4
. The solution is therefore

y = c1x
1
2J 1

4

(
1

2
x2
)

+ c2x
1
2J− 1

4

(
1

2
x2
)
.

We could also write the solution as

y = c1x
1
2J 1

4

(
1

2
x2
)

+ c2x
1
2Y 1

4

(
1

2
x2
)
.

This is because for non integer values of α the Yα Bessel functions are
just constant multiples of the Jα Bessel functions.

(b) The equation is x2y′′ + 5xy′ + (3 + 4x2)y = 0. We have 1− 2s = 5,
s = −2. Next, x2r = x2 so r = 1. Then a2 = 4. Hence a = 2. Now
s2 − α2r2 = 4− α2 = 3. So α = ±1. The solution is then

y = c1x
−2J1 (2x) + c2x

−2Y1(2x).

(c) For xy′′−3y′−9x5y = 0. Then x2y′′−3xy′−9x6y = 0. We see that
1− 2s = −3 so s = 2. Then x2r = x6 or r = 3. Then r2a2 = 9a2 = −9
or a = i. Finally s2 − r2α2 = 4 − 9α2 = 0. So α = ±2

3
. Since a is

imaginary we use the modified Bessel functions.

y = c1x
2I 2

3
(x3) + c2x

2I− 2
3
(x3).

We can also write this as

y = c1x
2I 2

3
(x3) + c2x

2K 2
3
(x3).

(d) x2y′′+5xy′+
(
8 + 4

x4

)
y = 0. Here 1−2s = 5, or s = −2. Now x2r =

x−4 or r = −2. Then 4a2 = 4 or a = 1. Then s2 − r2α2 = 4− 4α2 = 8,
so 4α2 = −4. Or α = ±i. The solution is thus

y = c1x
−2Ji

(
1

x2

)
+ c2x

−2J−i

(
1

x2

)
.

Question Three. In Question One, equations (a), (b) and (c) and (h)
can be solved in terms of Bessel functions. The solutions are respec-
tively

y = c1xI0

(
2
√
x√
3

)
+ c1xK0

(
2
√
x√
3

)
,

y = c1x
1/4I√3(

√
2x) + c2x

1/4I−
√
3(
√

2x),

y = c1x
−1/4J 1

4

(
x√
2

)
+ c2x

−1/4J− 1
4

(
x√
2

)
y = c1x

−1/6J 7
3

(
2
√
x√
3

)
+ c2x

−1/6J− 7
3

(
2
√
x√
3

)
.
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Question Four. The equation xy′′ + (1 − x)y′ + ny = 0 is actually a
form of the confluent hypergeometric equation which we will encounter
later. Since there is an n in the equation we put y =

∑∞
k=0 akx

k+s.
Then we require

x
∞∑
k=0

(k + s)(k + s− 1)akx
k+s−2 + (1− x)

∞∑
k=0

(k + s)akx
k+s−1

+ n
∞∑
k=0

akx
k+s

=
∞∑
k=0

(k + s)(k + s− 1)akx
k+s−1 +

∞∑
k=0

(k + s)akx
k+s−1

−
∞∑
k=0

(k + s)akx
k+s +

∞∑
k=0

nakx
k+s

= a0x
s−1s2 +

∞∑
k=1

[(k + s)(k + s− 1) + (k + s)]akx
k+s−1

−
∞∑
k=0

(k + s− n)akx
k+s

= a0x
s−1s2 +

∞∑
k=1

[(k + s)((k + s− 1) + 1)]akx
k+s−1

−
∞∑
k=0

(k + s− n)akx
k+s

= a0x
s−1s2 +

∞∑
k=1

(k + s)2akx
k+s−1 −

∞∑
k=0

(k + s− n)akx
k+s

= a0x
s−1s2 +

∞∑
k=0

(k + s+ 1)2ak+1x
k+s −

∞∑
k=0

(k + s− n)akx
k+s

= a0x
s−1s2 +

∞∑
k=0

[(k + s+ 1)2ak+1x
k+s − (k + s− n)ak]x

k+s = 0.

This gives s = 0. We also have

ak+1 =
k + s− n

(k + s+ 1)2
ak.

Taking s = 0 we have

ak+1 =
k − n

(k + 1)2
ak, k ≥ 0.

Assume that n is a positive integer. Taking k = 0 gives a1 = −na0.
k = 1 gives a2 = −n(1−n)a0

12×22 , a3 = −n(1−n)(2−n)a0
(3!)2

etc. Notice that if k = n
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then

an+1 =
(n− n)an
(n+ 1)2

= 0.

It will then follow that an+2 = 0, an+3 = 0 etc. So only finitely many
term of the solution are nonzero. In other words if n is a positive
integer one of the solutions is a polynomial. In general

ak =
−n(1− n) · · · (k − 1− n)a0

(k!)2
, k = 1, ..., n,

For n a positive integer all other terms are zero. If n is not a positive
integer, this formula holds for all k. In fact there is a simple formula
for the Laguerre polynomials. We can check that polynomial solutions
have the form

Ln(x) =
n∑
k=0

(
n

k

)
(−1)kxk

k!
,

where
(
n
k

)
are the Binomial coefficients. There is a remarkable formula

which can be proved by expanding both sides as a Taylor series. For
all |t| < 1

1

1− t
exp

(
− xt

t− 1

)
=
∞∑
n=0

tnLn(x).

The Laguerre polynomials can also be generated by the Rodriguez for-
mula

Ln(x) = (−1)nex
1

n!

dn

dxn
(
e−xxn

)
.

For a second solution we can write the coefficients as

ak(s) =
k + s− 1− n

(k + s)2
ak−1.

We only treat the case when n is not a positive integer. If we treat a0
as a constant and iterate we have

ak(s) =
(s− n)

(s+ 1)2
(s− n+ 1)

(s+ 2)2
· · · (k + s− 1− n)

(s+ k)2
a0

Taking the natural logarithm gives

ln ak(s) =
k∑
j=1

ln(s− n+ j − 1)− 2
k∑
j=1

ln(s+ j) + ln a0

Differentiating both sides gives

a′k(s)

ak(s)
=

k∑
j=1

1

s− n+ j − 1
−

k∑
j=1

2

s+ j
.
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Hence

a′k(0) = ak(0)

(
k∑
j=1

1

j − 1− n
−

k∑
j=1

2

j

)

= ak(0)

(
k∑
j=1

1

j − 1− n
− 2Hk

)
where Hk =

∑k
j=1

1
j

is the kth harmonic number and

ak(0) =
−n(1− n) · · · (k − 1− n)a0

(k!)2
.

If y0(x) is the solution we found by the method of Frobenius corre-
sponding to s = 0 we now have a second solution

y(x) = y0(x) lnx+
∞∑
k=1

a′k(0)xk.

If n is an integer we can construct a second solution, but must be
careful not to divide by zero. We can also use the formula for a second
solution in the notes. We will return to the problem of finding a second
solution to an equation of this form later.

Question Five. We will do this in the workshop in the last week of
class. The solution will be posted then. However it would be useful to
try and solve it yourself.


