
37335 Differential Equations.

Tutorial Four Solutions.

Series Solutions. Regular Singular Points.

Question One.
(a). We have to solve 2y′′ − xy′ − 2y = 0. This has only ordinary
points because the coefficients are analytic everywhere. We let y =∑∞

n=0 anx
n. Then

y′ =
∞∑
n=1

nanx
n−1,

y′′ =
∞∑
n=2

n(n− 1)anx
n−2.

Substituting into the equation gives us

2
∞∑
n=1

n(n− 1)anx
n−2 − x

∞∑
n=2

nanx
n−1 − 2

∞∑
n=0

anx
n

=
∞∑
n=2

2n(n− 1)anx
n−2 −

∞∑
n=1

nanx
n −

∞∑
n=0

2anx
n.

We look at the first and last series and see that they both start with
a term involving x0. The middle term starts with a term multiplying x.
So we take a term out of the first and last series so that all the series
start with the same power of x.

=
∞∑
n=2

2n(n− 1)anx
n−2 −

∞∑
n=1

nanx
n −

∞∑
n=0

2anx
n

= 4a2 − 2a0 +
∞∑
n=3

2n(n− 1)anx
n−2 −

∞∑
n=1

nanx
n −

∞∑
n=1

2anx
n.

We write under the same summation sign. So the first series has to be
lowered to start at n = 1. This means that the n inside the sum has
to go up by 2 to compensate.

= 4a2 − 2a0 +
∞∑
n=3

2n(n− 1)anx
n−2 −

∞∑
n=1

nanx
n −

∞∑
n=1

2anx
n

= 4a2 − 2a0 +
∞∑
n=1

2(n + 2)(n + 1)an+2x
n −

∞∑
n=1

nanx
n −

∞∑
n=1

2anx
n

= 4a2 − 2a0 +
∞∑
n=1

[2(n + 2)(n + 1)an+2 − (n + 2)an]xn = 0.
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So we must have 4a2−2a0 = 0 and 2(n+2)(n+1)an+2−(n+2)an = 0.
Hence a2 = 1

2
a0 and

an+2 =
an

2(n + 1)
, n ≥ 1.

Now let us generate the coefficients. Start with the even values of n.
We have a2 = 1

2
a0, a4 = a2

2(3)
= a0

22×3 . a6 = a4
2(5)

= a0
23(3×5) ,

a8 =
a0

24(3× 5× 7)
=

2× 4× 6a0
247!

=
233!a0
247!

.

From this we deduce the general formula

a2n =
2n−1(n− 1)!a0

2n(2n− 1)!
, n ≥ 1.

Note this formula obviously does not work for n = 0, so we treat this
as a special case.

Now we do the odd values of n.
a3 = a1

2(2)
, a5 = a3

2(4)
= a1

22(2×4) ,

a7 =
a5

2(6)
=

a1
23(2× 4× 6)

=
a1

263!
.

We deduce the general formula

a2n+1 =
a1

22nn!
, n ≥ 0.

We have a solution which is written

y =
∞∑
n=0

a1
22nn!

x2n+1 + a0

(
1 +

∞∑
n=1

2n−1(n− 1)!

2n(2n− 1)!
x2n

)
.

(b) We have y′′−(x+1)y = 0. Note the similarity to the Airy equation.

Let z = x+1, set y(x) = Y (z). Then y′′ = d2Y
dz2

so the equation becomes
Y ′′ − zY = 0 and this is in the notes.
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(c) y′′ − x2y′ − 2xy = 0 which becomes
∞∑
n=2

n(n− 1)anx
n−2 − x2

∞∑
n=1

nanx
n−1 − 2x

∞∑
n=0

anx
n

=
∞∑
n=2

n(n− 1)anx
n−2 −

∞∑
n=1

nanx
n+1 −

∞∑
n=0

2anx
n+1

= 2a2 + (6a3 − 2a0)x +
∞∑
n=4

n(n− 1)anx
n−2 −

∞∑
n=1

nanx
n+1 −

∞∑
n=1

2anx
n+1

= 2a2 + (6a3 − 2a0)x +
∞∑
n=2

(n + 2)(n + 1)an+2x
n −

∞∑
n=2

(n− 1)an−1x
n

−
∞∑
n=2

2an−1x
n

= 2a2 + (6a3 − 2a0)x +
∞∑
n=2

[(n + 2)(n + 1)an+2 − (n− 1 + 2)an−1]x
n = 0.

So we have a2 = 0 and a3 = 1
3
a0 and

an+2 =
an−1

(n + 2)
, n ≥ 2.

We generate the coefficients in the usual way. So we let n = 2, which
gives a4 = a1

4
, a6 = a3

6
= 1

3
1
6
a0, a8 = a5

8
, etc. Now a5 = a2

5
= 0. So

a8 = 0. a10 = a7
10

and a7 = a4
7

= 1
7
1
4
a1. The solution can be written

y = a0(1 +
1

3
x2 +

1

18
x6 + · · · ) + a1(x +

1

4
x4 +

1

28
x7 + · · · ).

(d) The problem is to solve (1 + x)y′′ − y = 0. x = 0 is an ordinary
point and x = −1 is a singular point. We expand around the ordinary
point. So we set y =

∑∞
n=0 anx

n. We find

(1 + x)
∞∑
n=2

n(n− 1)anx
n−2 −

∞∑
n=0

anx
n

=
∞∑
n=2

n(n− 1)anx
n−2 +

∞∑
n=2

n(n− 1)anx
n−1 −

∞∑
n=0

anx
n

= 2a2 − a0 +
∞∑
n=3

n(n− 1)anx
n−2 +

∞∑
n=2

n(n− 1)anx
n−1 −

∞∑
n=1

anx
n

= 2a2 − a0 +
∞∑
n=1

(n + 1)(n + 2)anx
n +

∞∑
n=1

n(n + 1)an+1x
n −

∞∑
n=1

anx
n

= 2a2 − a0 +
∞∑
n=1

[(n + 1)(n + 2)an + n(n + 1)an+1x
n − an]xn = 0.
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So a2 = 1
2
a0 and

an+2 =
−n
n + 2

an+1 +
an

(n + 2)(n + 1)
.

We cannot find a closed form expression here, but we can generate as
many coefficients as we wish.

a3 = −1

3
a2 +

a1
3.2

= −1

6
a0 +

1

6
a1,

a4 = −2

4
a3 +

1

3.4
a2 = −1

2
(−1

6
a0 +

1

6
a1) +

1

2.3.4
a0 =

1

8
a0 −

1

12
a1.

Thus the solution is

y = a0(1 +
1

2
x2 − 1

6
x3 +

1

8
x4 + · · · ) + a1(x +

1

6
x3 − 1

12
x4 + · · · ).

Note: This is how solutions are usually written, since it is generally
not possibly to find a closed form for the coefficients an.

(e) y′′−(sinx)y = 0. This is a more complicated example. It illustrates
what happens when the equation isn’t ‘nice.’ We can still generate a

solution. The key is to put sinx =
∑∞

k=0
(−1)kx2k+1

(2k+1)!
. Let y =

∑∞
n=0 anx

n.

Then we have
∞∑
n=2

n(n− 1)anx
n−2 −

∞∑
k=0

(−1)kx2k+1

(2k + 1)!

∞∑
n=0

anx
n = 0.

The problem is the second term. So we expand it out.

∞∑
k=0

(−1)kx2k+1

(2k + 1)!

∞∑
n=0

anx
n =

(
x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
− · · ·

)
×

(a0 + a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a + 7x7 + · · · )

=
∞∑
n=1

bnx
n.

We see that b1 = a0, b2 = a1, b3 = a2 − a0
3!

b4 = a3 − a1
3!

etc. In general
we have

bn =

bn/2c∑
k=0

(−1)k
an−2k

(2k + 1)!
.

The equation is then

2a2 +
∞∑
n=3

n(n− 1)anx
n−2 −

∞∑
n=1

bnx
n

= 2a2 +
∞∑
n=1

n + 2(n + 1)an+2x −
∞∑
n=1

bnx
n = 0.



5

So a2 = 0, and

an+2 =
1

(n + 2)(n + 1)
bn.

From this we can generate the coefficients. This is quite laborious.
However the solution can be written

y = a0

(
1 +

1

6
x3 − 1

120
x6 − 1

120
x5 +

1

180
x6 +

1

5040
x7 + · · ·

)
+ a1

(
x +

1

12
x4 − 1

180
x6 +

1

504
x7 + · · ·

)
.

(f) The equation is y′′− xy′− x2y = 0. Using the standard formula for
a series solution this becomes

∞∑
n=2

n(n− 1)anx
n−2 − x

∞∑
n=1

nanx
n−1 − x2

∞∑
n=0

anx
n

=
∞∑
n=2

n(n− 1)anx
n−2 −

∞∑
n=1

nanx
n −

∞∑
n=0

anx
n+2 = 0.

We take two terms out of the first series and one out of the second so
that they all start with a term involving x2.

=
∞∑
n=2

n(n− 1)anx
n−2 −

∞∑
n=1

nanx
n −

∞∑
n=0

anx
n+2

= 2a2 + (6a3 − a1)x +
∞∑
n=4

n(n− 1)anx
n−2 −

∞∑
n=2

nanx
n −

∞∑
n=0

anx
n+2

= 2a2 + (6a3 − a1)x +
∞∑
n=2

(n + 2)(n + 1)an+2x
n −

∞∑
n=2

nanx
n −

∞∑
n=2

an−2x
n

= 2a2 + (6a3 − a1)x +
∞∑
n=2

[(n + 2)(n + 1)an+2 − nan − an−2]x
n = 0.

This is a two term recurrence relation. These are typical of what
arises in practice, unless the equation has a nice structure. We have
a2 = 0, a3 = 1

6
a1 and

an+2 =
nan + an−2

(n + 1)(n + 2)
, n ≥ 2.

Then a4 = 2a2+a0
3.4

= a0
3.4

, a5 = 3a3+a1
4.5

= ( 1
2.4.5

+ 1
4.5

)a1 = 3a1
2.4.5

, a6 =
4a4+a2

5.6
= 4

5.6
a4 = 4a0

3.4.5.6
a0 etc. So the solution is

y = a0(1 +
1

12
x4 +

1

90
x6 + · · · ) + a1(x +

1

6
x3 +

3

40
x5 + · · · ).

For two term recurrence relations, it is rarely possible to find a closed
form for the coefficients. However with a computer package we can
generate thousands of coefficients in a few seconds, so we can obtain a
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solution to any degree of accuracy we desire. In practice the coefficients
are obtained by a computer package.

(g) We now have y′′ − (x2 + 1)y = 0. This leads to

∞∑
n=2

n(n− 1)anx
n−2 − x2

∞∑
n=0

anx
n −

∞∑
n=0

anx
n

=
∞∑
n=2

n(n− 1)anx
n−2 −

∞∑
n=0

anx
n+2 −

∞∑
n=0

anx
n

= 2a2 − a0 + (6a3 − a1)x +
∞∑
n=4

n(n− 1)anx
n−2 −

∞∑
n=0

anx
n+2 −

∞∑
n=2

anx
n

= 2a2 − a0 + (6a3 − a1)x +
∞∑
n=2

(n + 2)(n + 1)an+2x
n −

∞∑
n=2

an−2x
n −

∞∑
n=2

anx
n

= 2a2 − a0 + (6a3 − a1)x +
∞∑
n=2

[(n + 2)(n + 1)an+2 − an−2 − an]xn

So a2 = 1
2
a0, a3 = 1

6
a1,

an+2 =
an + an−2

(n + 1)(n + 2)
, n ≥ 2.

We generate the coefficients in the usual manner. We get two solutions

y = a0(1 +
1

2
x2 +

1

8
x4 +

1

48
x6 +

1

384
x8 + · · · )

and

y = a1(x +
1

6
x3 +

7

120
x5 + · · · ).

In fact the equation can be transformed into the equation

y′′ −
(
x2

4
+ a

)
y = 0.

This has solutions that are called parabolic cylinder functions. There
are two linearly independent solutions which can be written

y1 = e−
1
4
x2

1F1

(
1

2
a +

1

4
,
1

2
,
1

2
x2

)
y1 = xe−

1
4
x2

1F1

(
1

2
a +

3

4
,
3

2
,
1

2
x2

)
.

The function 1F1(m,n, z) is a confluent hypergeometric function which
we will see later.
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(h) (x2 + 1)y′′ − xy′ + y = 0 becomes

x2

∞∑
n=2

n(n− 1)anx
n−2 +

∞∑
n=2

n(n− 1)anx
n−2 − x

∞∑
n=1

nanx
n−1 +

∞∑
n=0

anx
n

=
∞∑
n=2

n(n− 1)anx
n +

∞∑
n=2

n(n− 1)anx
n−2 −

∞∑
n=1

nanx
n +

∞∑
n=0

anx
n

= 2a2 + a0 + 6a3x− a1x + a1x +
∞∑
n=2

n(n− 1)anx
n +

∞∑
n=4

n(n− 1)anx
n−2

−
∞∑
n=2

nanx
n +

∞∑
n=2

anx
n

= 2a2 + a0 + 6a3x +
∞∑
n=2

n(n− 1)anx
n +

∞∑
n=2

(n + 2)(n + 1)an+2x
n

−
∞∑
n=2

nanx
n +

∞∑
n=2

anx
n

= 2a2 + a0 + 6a3x1 +
∞∑
n=2

n(n− 1)anx
n +

∞∑
n=2

(n + 2)(n + 1)an+2x
n

−
∞∑
n=2

nanx
n +

∞∑
n=2

anx
n

= 2a2 + a0 + 6a3x

+
∞∑
n=2

[(n + 2)(n + 1)an+2 + (n(n− 1)− (n− 1)an]xn

= 2a2 + a0 + 6a3x

+
∞∑
n=2

[
(n + 2)(n + 1)an+2 + (n− 1)2an

]
xn = 0.

So a2 = −1
2
a0, a3 = 0 and

an+2 = − (n− 1)2

(n + 1)(n + 2)
an, n ≥ 2.

Clearly a5 = (3−1)2
4.5

a3 = 0 and in fact all odd coefficients higher than
one are equal to zero. So y = a1x is a solution. This is obvious. We
can generate the other coefficients as follows.

a4 = −(2− 1)2

3.4
a2 = (−1)2

1

2× 3× 4
a0,

a6 = −(4− 1)2

5.6
a4 = (−1)3

32

6!
a0
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In general the even coefficients are given by

a2n = (−1)n
1× 1× 32 × 52 × · · · (2n− 3)2

(2n)!
a0, n ≥ 1.

So the second solution is

y = a0(1 +
∞∑
n=0

(−1)n
1× 1× 32 × 52 × · · · (2n− 3)2

(2n)!
x2n.

Now we have an explicit solution y = x. Using the methods from
lectures we can construct a second solution. It is

y = sinh−1 x−
√
x2 + 1.

This is the function the power series represents.

(i) Here we have the most challenging problem. y′′+ exy′+ (x2 + 1)y =
0 and we want y(0) = 1, y′(0) = 0. Now if y =

∑∞
n=0 anx

n then
y(0) = a0 = 1. Also y′ =

∑∞
n=1 nanx

n−1 = a1 + 2a2x + 3a3x
2 + · · · . So

y′(0) = a1 = 0. So we know that a1 = 0. Substituting the series into
the equation gives
∞∑
n=2

n(n− 1)anx
n−2 +

∞∑
k=0

xk

k!

∞∑
n=1

nanx
n−1 + (x2 + 1)

∞∑
n=0

anx
n = 0.

We proceed as with problem (e). I will not go through the details.
If you want them, I will provide them on a separate sheet, since the
details are messy. This leads to a series of equations for the coefficients.
These are

2a2 + a1 + a0 = 0

6a3 + 2a1 + 2a2 = 0

12a4 + 3a3 + 3a2 +
1

2
a1 + a0 = 0.

etc. Solving these gives the solution

y = 1− 1

2
x2 +

1

6
x3 − 1

1
120x5 +

11

720
x6 + · · · .


