
37335 Differential Equations.

Tutorial Six Solutions.
Q1. Solve Legendre’s equation

(1− x2)y′′ − 2xy′ + n(n+ 1)y = 0.

We set

y =
∞∑
k=0

akx
k.

Proceeding as usual we get

(1− x2)
∞∑
k=2

k(k − 1)akx
k−2 − 2x

∞∑
k=1

kakx
k−1 + n(n+ 1)

∞∑
k=0

akx
k =

∞∑
k=2

k(k − 1)akx
k−2 −

∞∑
k=2

k(k − 1)akx
k −

∞∑
k=1

2kakx
k +

∞∑
k=0

n(n+ 1)akx
k

= 2a2 + n(n+ 1)a0 + (6a3 − a1(2− n(n+ 1)))x+
∞∑
k=4

k(k − 1)akx
k

−
∞∑
k=2

k(k − 1)akx
k −

∞∑
k=2

2kakx
k +

∑
k=2

n(n+ 1)akx
k

= 2a2 + n(n+ 1)a0 + (6a3 − a1(2− n(n+ 1)))x

+
∞∑
k=2

(k + 2)(k + 1)ak+2x
k −

∞∑
k=2

(k2 + k − n2 − n)akx
k

= 2a2 + n(n+ 1)a0 + (6a3 − a1(2− n(n+ 1)))x

+
∞∑
k=2

[
(k + 2)(k + 1)ak+2 − (k2 + k − n2 − n)ak

]
xk = 0

So a2 = −n(n+1)
2

a0, a3 = 2−n(n+1)
6

a1 and

ak+2 =
k2 + k − n2 − n
(k + 2)(k + 1)

ak.

Assume that n is a positive integer. Obviously an+2 = n2+n−n2−n
(n+2)(n+1)

an =

0. It then follows that an+4 = 0, an+6 = 0 etc. So if n is an integer the
coefficient an+2j will be zero for all j = 1, 2, .... Suppose that n = 4.
Then one of the solutions will be

y = a0 + a2x
2 + a4x

2,

which is a polynomial of degree 4. All the other even terms will be
zero. If n = 5 the solution will be

y = a1x+ a3x
2 + a5x

5,
1



2

which is again a polynomial. The coefficients a7, a9 etc will all be
zero, so the solution terminates after the fifth term of the series. The
polynomials are called Legendre polynomials.

Finding closed form expressions for the coefficients ak in the gen-
eral solution requires a bit of work. One formula for the polynomial
solutions is

Pn(x) =
n∑
k=0

(
n
k

)(
n+ k
k

)(
x− 1

2

)k
.

For n not an integer, the solutions are given by what are called
Legendre functions. You can generate terms in the series expansions
from the recurrence formulae, but these are not terribly useful. There
are more useful expressions. For example if n = s, s real, we have

Ps(x) =
1

2π

∫ π

−π
(x+

√
x2 − 1 cos θ)sdθ. (0.1)

There is a similar formula for the second solution. You can find it in
various books. We will not make any further use of them, but Legendre
polynomials are used extensively in, for example, numerical integration.
Schemes which are more accurate than Simpson’s rule can be obtained
using Legendre polynomials. In fact such highly accurate schemes can
obtained using other families of polynomials, but this is outside the
scope of our subject.
Question 2.

Here we solve Gauss’ hypergeometric equation

x(1− x)y′′ + [c− (1 + a+ b)x]y′ − aby = 0.

We look for a solution of the form y =
∑∞

n=0Anx
n+s. Substituting into

the equation gives

x(1− x)
∞∑
n=0

An(n+ s)(n+ s− 1)xn+s−2

+ (c− (1 + a+ b)x)
∞∑
n=0

An(n+ s)xn+s−1 − ab
∞∑
n=0

Anx
n+s = 0.

Which is

∞∑
n=0

An(n+ s)(n+ s− 1)xn+s−1 −
∞∑
n=0

An(n+ s)(n+ s− 1)xn+s

+
∞∑
n=0

cAn(n+ s)xn+s−1 −
∞∑
n=0

(1 + a+ b)(n+ s)Anx
n+s −

∞∑
n=0

abAnx
n+s

= 0.
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Or

(s(s− 1) + sc)A0x
s−1 +

∞∑
n=1

An(n+ s)(n+ s− 1)xn+s−1

−
∞∑
n=0

An(n+ s)(n+ s− 1)xn+s

+
∞∑
n=1

cAn(n+ s)xn+s−1 −
∞∑
n=0

(1 + a+ b)(n+ s)Anx
n+s −

∞∑
n=0

abAnx
n+s

= 0.

This gives s = 0 or s = 1− c and
∞∑
n=1

An(n+ s)(n+ s− 1)xn+s−1 −
∞∑
n=1

An−1(n+ s− 1)(n+ s− 2)xn+s−1

+
∞∑
n=1

cAn(n+ s)xn+s−1 −
∞∑
n=1

(1 + a+ b)(n+ s− 1)An−1x
n+s−1

−
∞∑
n=1

abAn−1x
n+s−2

= 0.

Hence
∞∑
n=1

[(n+ s)(n+ s− 1 + c)An − ((n+ s− 1)(n+ s− 2)

+ ((n+ s− 1)(1 + a+ b) + ab)An−1]x
n+s−1 = 0

Hence

An =
(n+ s− 1)((n+ s− 2) + (1 + a+ b)) + ab)

(n+ s)(n+ s− 1 + c)
An−1, n ≥ 1.

Take s = 0. Then

An =
(n− 1)[(n− 2) + (1 + a+ b)] + ab)

n(n− 1 + c)
An−1

=
(n− 1)[(n− 1 + a+ b)] + ab

n(n− 1 + c)
An−1

=
(n+ a− 1)(n+ b− 1)

n(n− 1 + c)
An−1, n ≥ 1.

Thus A1 = ab
c
A0.

A2 =
1 + a+ b+ ab

2(c+ 1)
A1 =

(1 + a)(1 + b)

2(c+ 1)
A1 =

a(a+ 1)b(b+ 1)

2c(c+ 1)
A0
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A3 =
a(a+ 1)(a+ 2)b(b+ 1)(b+ 2)

3!c(c+ 1)(c+ 2)

etc.
Introduce the rising factorial or Pochhammer symbol (a)n = a(a +

1). · · · (a+ n− 1). Then the solution for s = 0 can be written in terms
of Gauss’ Hypergeometric function

2F1(a, b, c, x) =
∞∑
n=0

(a)n(b)n
n!(c)n

xn.

This is valid if c is not a negative integer. For c a negative integer we
can define the function using an integral representation, but we will
not discuss this. For s = 1 − c a similar calculation gives the second
solution

y2 = x1−c2F1(1 + a− c, 1 + b− c, 2− c, x)

Hypergeometric functions play a major role in the study of differential
equations. Many ODEs can be converted into a hypergeometric equa-
tion by a change of variables and many different functions are special
cases of hypergeometric functions.

Question 3. We have the so called confluent hypergeometric equation
xy′′+(b−x)y′−ay = 0. As usual put y =

∑∞
n=0Anx

n+s and substitute
into the equation to obtain

x
∞∑
n=0

(n+ s)(n+ s− 1)Anx
n+s−2 + (b− x)

∞∑
n=0

(n+ s)Anx
n+s−1

− a
∞∑
n=0

Anx
n+s =

∞∑
n=0

(n+ s)(n+ s− 1)Anx
n+s−1

+
∞∑
n=0

b(n+ s)Anx
n+s−1 −

∞∑
n=0

(n+ s)Anx
n+s −

∞∑
n=0

aAnx
n+s

= (s(s− 1) + bs)A0x
s−1 +

∞∑
n=1

[(n+ s)(n+ s− 1) + b(n+ s)]Anx
n+s−1

−
∞∑
n=0

(n+ s+ a)Anx
n+s

= (s2 + (b− 1)s)A0x
s−1

+
∞∑
n=1

[(n+ s)(n+ s− 1 + b)An − (n+ s+ a− 1)An−1]x
n+s−1 = 0.

So s = 0 or 1− b and

An =
(n+ s+ a− 1)

(n+ s)(n+ s− 1 + b)
An−1, n ≥ 1.
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We introduce the rising factorial, which is also called Pochhammer’s
symbol. (α)k = α(α + 1) · · · (α + k − 1). Then

A1 = a
1×bA0, A2 = a+1

1×2bA1 = a(a+1)
2!(b(b+1)

A0, A3 = a(a+1)(a+2)
3!b(b+1)(b+2)

etc. In

general we have

An =
(a)n
n!(b)n

and the solution is

y = A0

∞∑
n=0

(a)n
n!(b)n

xn.

The choice A0 = 1 produces Kummer’s confluent hypergeometric
function, which is usually written as

1F1(a, b, x) =
∞∑
n=0

(a)n
n!(b)n

xn.

There is a second solution which is called Tricomi’s confluent hyper-
geometric function. This will be derived in the workshop. It can be
written as the Laplace transform

U(a, b, x) =
1

Γ(a)

∫ ∞
0

e−xtta−1(1 + t)a+b−1dt.

A wide range of functions are actually special cases of the hyperge-
ometric functions.

Question 4. The Hermite equation is y′′ − 2xy′ + 2ny = 0. We have
only ordinary points, so put y =

∑∞
k=0 akx

k. So
∞∑
k=2

k(k − 1)akx
k−2 −

∞∑
k=1

2kakx
k +

∞∑
k=0

2nakx
k

= 2a2 + 2na0 +
∞∑
k=3

k(k − 1)akx
k−2 −

∞∑
k=1

2kakx
k +

∞∑
k=1

2nakx
k

= 2a2 + 2na0 +
∞∑
k=1

(k + 2)(k + 1)ak+2x
k −

∞∑
k=1

2kakx
k +

∞∑
k=1

2nakx
k

= 2a2 + 2na0 +
∞∑
k=1

[(k + 2)(k + 1)ak+2 − 2(k − n)ak]x
k

Thus a2 = −na0 and

ak+2 =
2(k − n)

(k + 2)(k + 1)
ak, k ≥ 1.

Clearly if n is a positive integer then

an+2 =
2(n− n)

(n+ 2)(n+ 1)
an = 0.
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So all further terms an+4, an+6 etc will be zero. Thus one of the solu-
tions will be a polynomial of degree n. These are known as Hermite
polynomials. We can generate this for different values of n. If n = 0,
y = 1, if n = 1 we get y = 2x is a solution. For n = 2 we get y = 4x2−2.
We can prove that the nth Hermite polynomial written Hn(x) is given
by

Hn(x) = (−1)nex
2 dn

dxn

(
e−x

2
)
.

However we will not give a rigourous proof, but merely point out that
if you test for various values of n, you can check that it produces
polynomial solutions of Hermite’s equation. Finally if we expand as a
Taylor series we get

f(x, t) = e2xt−t
2

= f(x, 0)t+ ft(x, 0)t+
1

2
ftt(x, 0)t2 +

1

3!
fttt(x, 0)t3 + · · ·

= 1 + 2xt+
1

2
(4x2 − 2)t2 +

1

3!
(8x3 − 12x)t3 + · · ·

=
∞∑
n=

1

n!
Hn(x)tn.

Questions 5 and 6. The solutions are in the lecture notes in the chapter
on Bessel functions.

Question 7.
We have a differential equation u′′+a1(x)u′+a2(x)u = 0. A common

trick is to knock out the middle term. There are several ways of doing
this, but they are all basically the same idea, just presented differently.
Let us try the substitution u = e

∫
φv. Put ψ =

∫
φ. Then u = eψv.

Now by the product rule

u′ = ψ′eψv + eψv′ = eψ(ψ′v + v′)

and

u′′ = eψ(v′′ + 2ψ′v′ + (ψ′′ + (ψ′)2)v).

u′′ + a1(x)u′ + a2(x)u = eψ(v′′ + 2ψ′v′ + (ψ′′ + (ψ′)2)v)

+ a1(x)eψ(ψ′v + v′) + a2(x)eψv

= eψ(v′′ + (2ψ′ + a1(x))v′ + (ψ′′ + (ψ′)2 + a1(x)ψ′ + a2(x))v = 0.

Thus we have to solve

v′′ + (2ψ′ + a1(x))v′ + (ψ′′ + (ψ′)2 + a1(x)ψ′ + a2(x))v = 0.

If we put 2ψ′ = −a1(x) we get

v′′ + (ψ′′ + (ψ′)2 + a1(x)ψ′ + a2(x))v = 0

and letting ψ =
∫
φ gives the result. We could also knock out the

lowest order term by setting ψ′′+ (ψ′)2 + a1(x)ψ′+ a2(x) = 0, but it is
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much harder to find ψ in this case. Actually finding a ψ which knocks
out the lowest derivative is equivalent to solving the original equation.

Question 8.
a) We want to solve u′′ + 2 cot xu′ − u = 0. We let ψ′ = − cotx. Then
ψ′′ = cosec2x. The equation we have to solve is then

v′′ + (cosec2x+ cot2 x− 2 cot2 x− 1)v = v′′ = 0.

So v(x) = Ax+B. Now ψ′ = − cotx, hence ψ = − ln(sinx). Thus the
solution of the original problem is

u(x) = e− ln(sinx)(Ax+B) =
Ax+B

sinx
.

b) The equation to solve is u′′ + 2 tanxu′ + 2 tan2 xu = 0. We put
ψ′ = − tanx. Then ψ′′ = − sec2 x. We are then led to

v′′ + (− sec2 x+ tan2 x− 2 tan2 x+ 2 tan2 x)v = v′′ − v = 0.

So v(x) = Aex + Be−x. Since ψ′ = − tanx, ψ = ln(cos x). So the
solution of the original equation is

u(x) = cos x(Aex +Be−x).

This is surprisingly useful trick. It has been used to reduce ODEs to
more tractable problems for a couple of centuries.


