
37335 Differential Equations.

Tutorial Three Solutions.
Question 1.

Constructing a Second Solution From a Known Solution.

(a) We have the equation x3y′′ + xy′ − y = 0. We know that y1(x) = x
is a solution, since y′1 = 1, y′′1 = 0, so x3y′′1 + xy′1 − y1 = 0 + x− x = 0.

We put the equation into the standard form so that we can use our
formula. We have y′′ + 1

x2y
′ − 1

x3y = 0. It is clear that p(x) = 1
x2 . We

easily see that
∫
p(x)dx = − 1

x
. Now the second solution y2 is given by

y2 = y1

∫
e−

∫
p(x)dx

(y1(x))2
dx = x

∫
e

1
x

x2
dx.

To evaluate this make the change of variables u = 1
x
. Then du = − 1

x2dx
so that the integral becomes

∫
e

1
x

x2
dx = −

∫
eudu = −eu = −e

1
x .

Since any multiple of a solution is a solution, we can drop the minus
sign. Then a second solution is y2 = xe

1
x .

(b) xy′′ + (1 − 2x)y′ + (x − 1)y = 0 has a solution y1 = ex. Clearly
p(x) = 1−2x

x
= 1

x
− 2. Integrating we have

∫
p(x)dx =

∫ (
1
x
− 2
)
dx =

lnx− 2x. The second solution is then

y2 = y1

∫
e−

∫
p(x)dx

(y1(x))2
dx = ex

∫
e− lnx+2x

e2x
dx

= ex
∫

1

x
dx = ex lnx.

(c) The equation 2xy′′+ (1− 4x)y′+ (2x− 1)y = ex, is inhomogeneous.
The homogeneous problem has a solution y1 = ex. We first construct
a second solution. Now p(x) = 1−4x

2x
= 1

2x
− 2. Then

∫
p(x)dx =∫

( 1
2x
− 2)dx = 1

2
lnx− 2x. A second solution is then

y2 = y1

∫
e−

∫
p(x)dx

(y1(x))2
dx = ex

∫
e−

1
2
lnx+2x

e2x
dx

= ex
∫

1√
x
dx = 2

√
xex.

1



2

Let y2 = 2
√
xex. We see that R(x) =

1

2x
ex. The Wronskian is

W (y1, y2) = y1y
′
2 − y2y

′
1 = ex(

1√
x
ex +

√
xex)−

√
xexex

=
e2x√
x
.

A particular solution is given by yp = uy1 + vy2 in which

u′ = −y2R

W
, v′ =

y1R

W
.

So

u = −
∫ (

2
√
xex

1

2x
ex
)
/

(
e2x√
x

)
dx = −

∫
dx = −x

and

v =

∫ (
ex

1

2x
ex
)
/

(
e2x√
x

)
dx =

∫
1

2
√
x
dx =

√
x.

Thus yp = −xex +
√
x(2
√
xex) = xex.

(d) So we have x2(x+2)y′′+2xy′−2y = (x+2)2. y1 = x is a solution of
the associated homogeneous equation. We find p(x) = 2

x(x+2)
= 1

x
− 1

x+2
.

So
∫
p(x)dx = lnx − ln(x + 2) = ln

(
x

x+2

)
. Hence e−

∫
p(x)dx = x+2

x
=

1 + 2
x
. So a second solution of the inhomogeneous problem is given by

y2 = x

∫
(1 +

2

x
)

1

x2
dx = x

∫ (
1

x2
+

2

x3

)
dx

= −x
(

1

x
+

1

x2

)
= −1− 1

x
.

Let y2 = 1 + 1
x
. Now R(x) =

x + 2

x2
. The Wronskian is

W (y1, y2) = y1y
′
2 − y2y

′
1 = −(1 +

2

x
).

We then have

u′ = −y2R

W
= (1 +

1

x
)
x + 2

x2
/(1 +

2

x
)

=
x + 1

x2
.

Hence u = lnx− 1
x
. For v we find

v′ =
y1R

W
= −x(

x + 2

x2
)/(1 +

2

x
) = −1.

So v = −x. Then the particular solution is

yp = uy1 + vy2 = x lnx− x− 2.
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These two examples show that in theory, if we have a single solution
of the equation y′′+a(x)y′+b(x)y = 0, then we can construct a solution
of the inhomogeneous problem y′′ + a(x)y′ + b(x)y = R(x).

Question 2.

Variation of Parameters Continued.

(a) We solve y′′ − 3y′ + 2y = −e2x
ex+1

. We take y1 = ex, y2 = e2x. The
Wronskian is

W (y1, y2) = y1y
′
2 − y2y

′
1 = e3x.

Clearly R(x) = −e2x
ex+1

. So

u′ = −y2R

W
=

e4x

e3x(ex + 1)
=

ex

ex + 1
.

Integrating gives u =
∫

ex

ex+1
dx =

∫
dw
w+1

= ln(w+ 1) = ln(ex + 1) where
we used the obvious substitution w = ex. Also

v′ =
y1R

W
= − e3x

e3x(ex + 1)

= − 1

ex + 1

= − e−x

e−x + 1
.

So v = ln(e−x + 1). Thus yp = ex ln(ex + 1) + e2x ln(e−x + 1).

(b) y′′+y = tanx secx. Take y1 = cosx and y2 = sinx. Then W (y1, y2) =
cos2 x + sin2 x = 1. Then

u′ = −y2R

W
= − sinx tanx secx = − tan2 x = 1− sec2 x.

Hence u = x− tanx.

v′ =
y1R

W
= cosx tanx secx = tanx.

So v =
∫

sinx
cosx

dx = − ln(cosx) = ln(sec x). Giving

yp = cosx(x− tanx) + sinx ln(secx) = x cosx− sinx + sinx ln(secx).

(c) y′′ + 2y′ + y = e−x sec2 x. y′′ + 2y′ + y = 0 has solutions y1 = e−x

and y2 = xe−x. R(x) = e−x sec2 x. Now

W (y1, y2) = y1y
′
2 − y′1y2 = e−x(e−x − xe−x) + xe−xe−x = e−2x.

Then

u′ = −y2R

W
= −xe−xe−x secx /(e−2x) = −x sec2 x.
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So that

u = −
∫

x sec2 xdx = −x tanx +

∫
tanxdx

= −x tanx + ln(secx).

v′ =
y1R

W
= e−xe−x sec2 x/(e−2x) = sec2 x.

Hence v = tanx. Hence

yp = e−x(ln(secx)− x tanx) + xe−x tanx = e−x ln(secx).

(d) y′′ − y = 2
ex+1

. Take y1 = ex, y2 = e−x. Obviously R(x) = 2
ex+1

and

W (y1, y2) = ex(−ex)− ex(ex) = −2.

Thus

u′ = − 2e−x

−2(ex + 1)
=

e−x

ex + 1
=

1

ex(ex + 1)

=
1

ex
− 1

ex + 1
= e−x − e−x

e−x + 1
.

Integrating gives u = −e−x + ln(e−x + 1). Next

v′ =
y1R

W
=

2ex

−2(ex + 1)
=
−ex

ex + 1
.

Hence v = − ln(ex + 1). Hence

yp = ex(−e−x + ln(e−x + 1)) + e−x(− ln(ex + 1))

= ex ln(e−x + 1)− 1− e−x ln(ex + 1).

(e) y′′ + 2y′ + y = 4e−x lnx. We have seen the homogeneous problem
before. Take y1 = ex, y2 = xe−x. Also W (y1, y2) = e−2x. Now

u′ = −y2R

W
= −4xe−2x lnx

e−2x
= −4x lnx.

We integrate by parts to obtain

u = −4

∫
x lnxdx = −2x2 lnx + 2

∫
xdx = −2x2 lnx + x2.

Next we find v.

v′ =
y1R

W
= 4e−2x lnx/(e−2x) = 4 lnx.

Integrating we have v =
∫

4 lnxdx = 4x lnx−
∫

4dx = 4x lnx− 4x. So
we have

yp = e−x(−2x2 lnx + x2) + xe−x(4x lnx− 4x)

= 2x2e−x lnx− 3x2e−x.
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(f) y′′ + y = cosecx. With y1 = cosx, y2 = sinx and W (y1, y2) = 1 we
have

u′ = − sinxcosecx = −1,

giving u = −x.

v′ = cosxcosecx = cotx.

So v = ln(sinx). Hence yp = −x cosx + sinx ln(sinx).

(g) y′′ − 2ay′ + (a2 + b2)y = eax(A cos(bx) + B sin(bx)) = R(x). The
solutions for the homogeneous problem are y1 = eax cos(bx), y2 =
eax sin(bx). Then

W (y1, y2) = eax cos(bx)(aeax sin(bx) + beax cos(bx)

− eax sin(bx)(aeax cos(bx)− bex sin(bx)

= be2ax.

After some algebra we find

u′ = −1

b
(B sin2(bx) + A sin(bx) cos(bx))

Now sin(bx) cos(bx) = 1
2

sin(2ax), sin2(bx) = 1
2
(1− cos(2bx)). Hence

u′ = −B

2b
(1− cos(2bx))− A

2b
sin(2bx),

or

u = −Bx

2b
+

B

4b2
sin(2bx) +

A

4b2
cos(2bx).

For v

v′ =
1

b
(A cos2 bx) + B sin(bx) cos(bx))

=
A

2b
(1 + cos(2bx)) +

B

2b
sin(2bx).

Hence

v =
Ax

2b
+

A

4b2
sin(2bx)− B

4b2
cos(2bx).

So we have

yp = eax cos(bx)

(
−Bx

2b
+

B

4b2
sin(2bx) +

A

4b2
cos(2bx)

)
+ eax sin(bx)

(
Ax

2b
+

A

4b2
sin(2bx)− B

4b2
cos(2bx)

)
.

Question 3

General Solution Formulae
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We have the equation y′′ + (a + b)y′ + aby = F (x). We suppose that
a 6= b. The homogeneous problem has solutions y1 = e−ax, y2 = e−bx.
The Wronskian is then

W (y1, y2) = y1y
′
2 − y2y

′
1 = −be−axe−bx − (−ae−axe−bx)

= (a− b)e−(a+b)x.

Now

u′ = −y2F

W
= − e−bxF (x)

(a− b)e−(a+b)x
= − 1

(a− b)
eaxF (x).

Recall that if G is the antiderivative of g, then w(x) =
∫
g(x)dx =

G(x) + C where C is a constant on integration. This is equivalent to
writing w(x) =

∫ x

x0
g(t)dt for some starting point x0. This is just the

fundamental Theorem of Calculus, since
∫ x

x0
g(t) = [G(t)]xx0

= G(x) −
G(x0). So the constant of integration C is in fact equal to −G(x0).

Using this fact we can write u as a definite integral. This gives

u(x) = −
∫ x

x0

1

(a− b)
eatF (t)dt.

Here x0 is an arbitrary starting point. We do the same for v.

v′ =
y1F

W
=

e−axF (x)

(a− b)e−(a+b)x

=
ebx

a− b
F (x).

As with u we write

v =
1

a− b

∫ x

x0

ebtF (t)dt.

Hence

yp = eaxu(x) + ebxv(x)

= −e−ax
∫ x

x0

eat

(a− b)
F (t) + ebx

∫ x

x0

ebt

a− b
F (t)dt

=

∫ x

x0

[
e−b(x−t) − e−a(x−t)

a− b

]
F (t)dt.

Question 4.

We can construct a general formula as follows. We have the ODE
y′′ + p(x)y′ + q(x)y = F (x). Two linearly independent solutions of the
inhomogeneous problem are y1 and y2. The Wronskian is W (y1, y2) =
y1y
′
2 − y2y

′
1 Then

u′ = −y2F

W
,
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so

u(x) = −
∫ x

x0

y2(t)F (t)

y1(t)y′2(t)− y2(t)y′1(t)
dt.

Similarly

v′ =
y1F

W
,

giving

v(x) =

∫ x

x0

y1(t)F (t)

y1(t)y′2(t)− y2(t)y′1(t)
dt.

Combining we have the particular solution

yp(x) =

∫ x

x0

y1(t)y2(x)− y1(x)y2(t)

y1(t)y′2(t)− y2(t)y′1(t)
F (t)dt.

Question 5.

Variation of Parameters for Higher Order Equations.

(a) The equation is x3y′′′+x2y′′−2xy′+2y = x3 sinx. The homogeneous
equation is of Euler type and its solutions are of the form y = xa.
So we substitute this into the homogeneous equation to get xa(a(a −
1)(a − 2) + a(a − 1) − 2a + 1) = 0. It is easy to check that this cubic
has roots ±1 and 2. So there are three linearly independent solutions
y1 = x, y2 = 1/x and y3 = x2.

A laborious calculation with a three by three determinant gives
W (y1, y2, y3) = − 6

x
. The sub-Wronskians are

W1(x) = (−1)3−1W (y2, y3) = 3,

W2(x) = (−1)3−2W (y1, y3) = −x2

W3(x) = (−1)3−2W (y1, y2) = −2

x
.

Now R(x) = sinx (Divide equation by x3) From the given formulae we
have

v′1(x) =
W1R

W (y1, y2, y3)
= −1

2
x sinx.

Integration gives v1(x) = 1
2
(x cosx− sinx). Similarly

v′2(x) =
W2(x)R(x)

W (y1, y2, y3)
=

1

6
x3 sinx.

Hence

v2(x) =
1

6
(3(x2 − 2) sinx− x(x2 − 6) cosx).
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Similarly we have v′3(x) = 1
3

sinx giving v3(x) = −1
3

cosx. Finally we
have

yp(x) = y1(x)v1(x) + y2(x)v2(x) + y3(x)v3(x)

=
1

2
x(x cosx− sinx) +

1

6x
(3(x2 − 2) sinx− x(x2 − 6) cosx)

− x2

3
cosx

= cosx− 1

x
sinx.

(b) We have the fourth order equation y(iv) − k2y′′ = g(x), 0 < x < L.
First we solve y(iv)−k2y′′ = 0. This leads to four solutions y1 = 1, y2 =
x, y3 = ekx, y4 = e−kx. It is easy to check that these are correct. We then
have to compute the Wronskian and all the various sub-Wronskians.
The Wronskian is given by a four by four determinant. The calculations
are tedious and we will only present the results. It is best to do them
in Mathematica. However we find

W (y1, y2, y3, y4) = 2k5.

Then

W1(x) = (−1)4−1W (y2, y3, y4) = 2k3x,

W2(x) = (−1)4−2W (y1, y3, y4) = −2k3

W3(x) = (−1)4−3W (y1, y2, y4) = −k2ekx

W4(x) = (−1)4−4W (y1, y2, y3) = k2e−kx.

Then

v′1(x) =
W1(x)g(x)

W (y1, y2, y3, y4)
=

xg(x)

k2
,

v′2(x) =
W2(x)g(x)

W (y1, y2, y3, y4)
=
−g(x)

k2
,

v′3(x) =
W3(x)g(x)

W (y1, y2, y3, y4)
=
−e−kxg(x)

2k3
,

v′4(x) =
W4(x)g(x)

W (y1, y2, y3, y4)
=

ekxg(x)

2k3
.

Then the general solution is

y =
4∑

n=1

cnyn(x) +
1

k3

∫ x

0

(
kt− kx− 1

2
ekxe−kt +

1

2
e−kxekt

)
g(t)dt

=
4∑

n=1

cnyn(x) +

∫ x

0

(
(t− x)

k2
− sinh(k(t− x))

k3

)
g(t)dt.
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Question 6. This is an assignment question. The solution will become
available after the assignment is submitted.


