Stoch Proc -Assignment Hints

Scott Alexander

Question 1

(a)

(b)

Look at TNC from Ch 2.

(c)

Look at TNC from Ch 2.

(d)

See page 45 from Ch 3.

Question 2

(a)

Simplify using independence property.

(b)

See Def 9 Ch 4.

Question 3

(a)

See previous Lab work for MC pricing.

(a)

See previous Lab work for MC pricing.

Question 4

(a)

Use network diagram to find ${\rm P}^{{\rm jump}}$ and then A.

```
\text{cov}~(X_3\text{,}~X_{30})~=~\mathbb{E}\left[\,X_3\,X_{30}\,\right]\,-\,\mathbb{E}\left[\,X_3\,\right]\,\mathbb{E}\left[\,X_{30}\,\right]\,\text{.}
```

For $\mathbb{E}\left[\, X_3 \, \right]$ you need p (3) .

For $\mathbb{E} \; [\, X_3 \, X_{30} \,]$ you need P $\, (\, X_3 < x \, , \, X_{30} < y \,) \;$ –– see Thrm 4 Ch 5.

(d)

See previous lab work.

Use independence property of B_t , N_t .

Question 5

(a)

Check stationarity condition and then determine type of process.

(c)

Check condtion page 31 Ch 8.

Question 6

(a)

Find recursion relationship for $X_{t \cdot h}$ and X_t .

Then apply condition $(\text{re}-\text{write condtion in terms of }B_{t})$.

(c)

Refer Lab work on OU process.

(d)

Use Ito.