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Definitions

In this chapter we discuss the class of Markov processes with continuous
trajectories.

This class of stochastic processes occurs frequently in quantitative
finance, physics, biology and statistics.

There are two different approaches to define and study this class:
1 analytical (via distributions)
2 trajectory (via stochastic equations).
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Definitions

The analytical approach is based on study of finite-dimensional
distributions (FDD) which are defined for any ti ∈ D, xi ∈ R,
i = 1, 2, . . . , n, as

FXt1 ,...,Xtn
(x1, . . . , xn) = P(Xt1 ≤ x1, . . . , Xtn ≤ xn),

To describe all FDDs of a Gaussian process one needs to know only two
functions (mean and covariance functions)

m(t) = E [Xt ] and Q(t, s) = cov(Xt , Xs).

To describe all FDDs of a Markov process one needs to know only two
functions (initial distribution and transition probability function).

4 / 46



Definitions

The trajectory approach is based on the study of stochastic relations
(equations) which describe the dynamics of a stochastic process.

Examples.
AR(1) process.

Xn = λ1Xn−1 + ξn

Geometric Brownian motion.

St = S0 exp(mt + σBt)

Compound Poisson process.

Xt =
Nt∑

n=1
Yn

——————————————————————————————
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Definitions

We begin with a definition of a diffusion process using the analytical
approach.

Definition 1 (Diffusion process (analytical approach))
A Markov process Xt , t ∈ [0, T ], with continuous trajectories such that
for some δ > 0

E [|Xt |2+δ] < ∞

is called a diffusion process if there exists functions a(s, x) and b(s, x)
such that for h → 0

E [Xs+h − Xs |Xs = x ] = a(s, x)h + o(h) (1)

and
E
[
(Xs+h − Xs)2|Xs = x

]
= b2(s, x)h + o(h). (2)
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Definitions

Recall that “little o” notation o(h) means that as h → 0

o(h)/h = o(1) → 0.

Therefore we can write that as h → 0

E [Xs+h − Xs |Xs = x ]/h → a(s, x)

and
E
[
(Xs+h − Xs)2|Xs = x

]
/h → b2(s, x).

The function a(s, x) is called a drift coefficient

The nonnegative function b(s, x) is called a diffusion coefficient.
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Definitions

Example.
A standard Brownian motion Bt , i.e. with E [Bt ] = 0 and var(Bt) = t, is
a diffusion process with continuous trajectories and independent
increments.

Hence
E [Bs+h − Bs |Bs = x ] = E [Bs+h − Bs ] = 0

and
E
[
(Bs+h − Bs)2|Bs = x

]
= E

[
(Bs+h − Bs)2] = h.

Therefore for this case

a(s, x) = 0 and b(s, x) = 1.

Actually, as we shall see later on, diffusion processes can be considered as
some functions of standard Brownian motions (although these functions
may be not explicit).
——————————————————————————————
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Definitions

It can be shown that under some general assumptions (e.g. when a(s, x)
and b(s, x) are continuous, differentiable functions and b(s, x) > 0) that
the corresponding diffusion process exists and is unique.

Remarks.
1. To define distributions of a diffusion process we need three functions:
a(s, x), b(s, x) and a distribution of an initial RV X0.

2. Existence and uniqueness are understood in the sense of distributions.

3. There exist other definitions of a diffusion process which do not
require the assumption E [|Xt |2+δ] < ∞.

For example, see A Benchmark Approach to Quantitative Finance
[Platen and Heath, 2006].
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Definitions

APPROXIMATION OF DIFFUSION PROCESS.
Let Bt be a standard Brownian motion and assume there exists a process
Xt such that Xs and (Bs+h − Bs) are independent for any s > 0 and

Xs+h − Xs = a(s, Xs)h + b(s, Xs)(Bs+h − Bs) + o(h). (3)

We shall show that such an Xt satisfies equations (1) and (2).

First, taking the conditional expectation of (3) gives

E [Xs+h − Xs |Xs ] = a(s, Xs)h + o(h).

which is (1).
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Definitions

Next note that

(Xs+h − Xs)2 = a2(s, Xs)h2 + b2(s, Xs)(Bs+h − Bs)2 + (o(h))2

+ 2a(s, Xs)hb(s, Xs)(Bs+h − Bs) + 2a(s, Xs)ho(h)
+ 2b(s, Xs)(Bs+h − Bs)o(h)

= b2(s, Xs)(Bs+h − Bs)2

+ 2a(s, Xs)hb(s, Xs)(Bs+h − Bs)
+ 2b(s, Xs)(Bs+h − Bs)o(h) + o(h).

Taking the conditional expectation we obtain

E
[
(Xs+h − Xs)2|Xs

]
= b2(s, Xs)h + o(h)

which is (2).

So Xt is a diffusion process with drift coefficient a(s, x) and diffusion
coefficient b(s, x).
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Definitions

The representation (3) can be justified with the use of so-called
stochastic integrals and stochastic differential equations (to be
considered later in this chapter).

It can be used for constructing a discrete time approximation
X̂ = (X̂ti )0≤ti ≤T for the diffusion process X = (Xt)0≤t≤T by setting

h = T
n , ti = i T

n = ih, i = 0, . . . , n

and dropping o(h) terms to give

X̂ti +h − X̂ti = a(ti , X̂ti )h + b(ti , X̂ti )(Bti +h − Bti ). (4)

Note that increments Bti +h − Bti ∼ N(0, h) and iid.

Such a recurrent procedure is called “Euler-Maryama approximation”
(note there exist other more accurate approximations e.g. “Milstein”
approximation etc).
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Definitions

Problem (Brownian motion (BM)).
Consider a Brownian motion Wt with E [Wt ] = mt and var(Wt) = σ2t.

Then a(s, x) = m and b(s, x) = σ.
——————————————————————————————

Problem (Geometric Brownian motion (gBM)).
Let St = S0 exp(mt + σBt) where Bt is a standard Brownian motion.

Show
a(s, x) = (m + σ2/2)x and b(s, x) = σx .

Solution. To find the drift coefficient note

E [Ss+h − Ss |Ss = x ] =
[
Ssemh+σ(Bs+h−Bs ) − Ss |Ss = x

]
= xE

[
emh+σ(Bs+h−Bs ) − 1

]
(independent increments)

= x(emh+ σ2
2 h − 1) = x(m + σ2/2)h + o(h).
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Definitions

Hence a(s, x) = (m + σ2/2)x .

For the diffusion coefficient

E
[
(Ss+h − Ss)2|Ss = x

]
=
[
(Ssemh+σ(Bs+h−Bs ) − Ss)2|Ss = x

]
= x2E

[
(emh+σ(Bs+h−Bs ) − 1)2] (independent increments)

= x2E
[
e2mh+2σ(Bs+h−Bs ) − 2emh+σ(Bs+h−Bs ) + 1

]
= x2(e2mh+2σ2h − 2emh+σ2h/2 + 1)
= x2(1 + 2mh + 2σ2h − 2 − 2mh − σ2h + 1 + o(h))
= x2σ2h + o(h).

Hence b(s, x) = σx .
——————————————————————————————

Finding drift and diffusion coefficients from stochastic representations
can be made much easier with use of Ito formula which will be shown
later in the chapter.
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Transition densities

REMINDER.
Recall that if Xt is a Markov process then

P(Xtn+1 < xn+1|Xt1 = x1, . . . , Xtn = xn) = P(Xtn+1 < xn+1|Xtn = xn).

Suppose there exists a joint density f (x1, t1; . . . ; xn, tn), i.e.

FXt1 ...Xtn
(x1, . . . , xn) =

∫ xn

−∞
· · ·
∫ x1

−∞
f (u1, t1; . . . ; un, tn) du1 . . . dun.

Denote the transition density function as

f (y , t|x , s) := f (x , s; y , t)
f (x , s) .
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Transition densities

Note that

f (y , t) =
∫ ∞

−∞
f (x , s; y , t)dx =

∫ ∞

−∞
f (y , t|x , s)f (x , s)dx .

Also recall that for 0 < t1 < · · · < tn ≤ T , n = 1, 2, . . ., that

f (x1, t1; . . . ; xn, tn) = f (x1, t1)
n∏

k=2
f (xk , tk |xk−1, tk−1)

and the Chapman-Kolmogorov equation

f (x3, t3|x1, t1) =
∫ ∞

−∞
f (x2, t2|x1, t1)f (x3, t3|x2, t2)dx2.

holds.
——————————————————————————————
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Transition densities

Example (standard Brownian motion).
For 0 ≤ s < t

f (y , t|x , s) = 1√
2π(t − s)

exp
(

− (y − x)2

2(t − s)

)
.

To see, note that

f (y , t|x , s) = ∂

∂y P
(
Bt < y |Bs = x

)
where

P
(
Bt < y |Bs = x

)
= P

(
Bt − Bs < y − Bs |Bs = x

)
= P

(
Bt − Bs < y − x

)
=
∫ y−x

−∞

1√
2π(t − s)

exp
(

− u2

2(t − s)

)
du.

——————————————————————————————
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Transition densities

Example (geometric Brownian motion).
Let

Xt = X0emt+σBt .

where Bt is a standard Brownian motion.

In this case for any y > 0, x > 0 and 0 ≤ s < t

f (y , t|x , s) = 1
y
√

2πσ2(t − s)
exp

(
−
(

log y
x − m(t − s)

)2

2σ2(t − s)

)
.
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Transition densities

To see this note that

f (y , t|x , s) = ∂

∂y P
(
X0emt+σBt < y |Xs = x

)
where

P
(
X0emt+σBt < y |Xs = x

)
= P

(
Xsem(t−s)+σ(Bt −Bs ) < y |Xs = x

)
= P

(
xem(t−s)+σ(Bt −Bs ) < y |Xs = x

)
= P

(
xem(t−s)+σ(Bt −Bs ) < y

)
(independent increments)

= P
(
σ(Bt − Bs) < log(y/x) − m(t − s)

)
=
∫ log(y/x)−m(t−s)

−∞

1√
2πσ2(t − s)

exp
(

− u2

2σ2(t − s)

)
du.

——————————————————————————————
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Transition densities

Example (standard Ornstein-Uhlenbeck process)
A stationary standard OU process is a Gaussian process with

E [Xt ] = 0 and Q(t, s) = cov(Xt , Xs) = e−|t−s|/2.

For any y , x and t > s

f (y , t|x , s) = 1√
π
(
1 − e−2(t−s)

) exp
(

−
(
y − xe−(t−s))2(
1 − e−2(t−s)

) )

Proof. As class work.
——————————————————————————————
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Transition densities

Example (geometric Ornstein-Uhlenbeck process)
Let Yt = eXt where Xt is a standard Ornstein-Uhlenbeck process.

Then for any y > 0, x > 0 and t > s

f (y , t|x , s) = 1

y
√

π
(
1 − e−2(t−s)

) exp
(

−
(

log(y) − log(x)e−(t−s))2(
1 − e−2(t−s)

) )
.

Proof. As class work.
——————————————————————————————

21 / 46



Transition densities

KOLMOGOROV EQUATIONS FOR TRANSITION DENSITIES.

Backward equation.
When y and t are fixed

∂f (y , t|x , s)
∂s + a(s, x)∂f (y , t|x , s))

∂x + 1
2b2(s, x)∂2f (y , t|x , s)

∂x2 = 0.

Forward equation.
When x and s are fixed

∂f (y , t|x , s)
∂t + ∂

∂y
(
a(t, y)f (y , t|x , s)

)
− 1

2
∂2

∂y2
(
b2(t, y)f (y , t|x , s)

)
= 0.

The forward equations is also called the Fokker-Planck equation.
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Transition densities

Initial conditions.
The backward and forward equations are solved subject to

f (s, y |s, x) = δ(y − x)

where Dirac’s delta is defined with the property∫ ∞

−∞
δ(y − x)dx = 1.
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Kolmogorov backward equation in Black-Scholes model

Consider a financial market with constant “risk-free” rate r and a gBM
model for the stock price

St = S0emt+σBt

where Bt is a standard Brownian motion

Let the payoff of a European option (i.e. the value of the contract at
maturity T ) be g(ST ), e.g.

g(ST ) = (ST − K )+

for a European vanilla call.

Then (by the theory of fair pricing of financial contracts) the price of this
European option at any moment s < T must be

V (x , s) = e−r(T−s)E [g(ST )|Ss = x ].
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Kolmogorov backward equation in Black-Scholes model

The function V (x , s) can be found as a solution of the backward PDE

∂V (x , s)
∂s + rx ∂V (x , s)

∂x + 1
2σ2x2 ∂2V (x , s)

∂x2 = rV (x , s) (5)

for s < T with the boundary condition

V (x , T ) = g(x).

Such PDEs can be solved for V (x , s) numerically using finite
difference/element techniques, using certain functions in Mathematica or
other computational software packages.
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Kolmogorov backward equation in Black-Scholes model

Derivation (outline)
Accordingly to the general theory of pricing of financial contract we need
to set m = r − σ2/2 so that

St = S0e(r− σ2
2 )t+σBt .

As shown earlier, St has drift and diffusion coefficients

a(s, x) = (m + σ2/2)x = rx and b(s, x) = σx

respectively.

The fair price of the option at moment s is

V (x , s) = e−r(T−s)E [g(ST )|Ss = x ]

and this implies the boundary condition because

V (x , T ) = E [g(ST )|ST = x ] = g(x).
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Kolmogorov backward equation in Black-Scholes model

Set for any suitably differentiable function G = G(s, x) the operator

L[G ] := ∂G
∂s + rx ∂G

∂x + 1
2σ2x2 ∂2G

∂x2 .

Let f ≡ f (y , T |x , s) be the transition density of the process St .

We know that f satisfies the Backward Kolmogorov equation

L[f ] = ∂f
∂s + rx ∂f

∂x + 1
2σ2x2 ∂2f

∂x2 = 0

for 0 ≤ s < T .
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Kolmogorov backward equation in Black-Scholes model

Applying the operator L to V (x , s) we obtain

L[V (x , s)] = L
[
e−r(T−s)E

[
g(ST )|Ss = x

]]
= ∂

∂s
(
e−r(T−s)E

[
g(ST )|Ss = x

])
+ rx ∂

∂x
(
e−r(T−s)E

[
g(ST )|Ss = x

])
+ 1

2σ2x2 ∂2

∂x2
(
e−r(T−s)E

[
g(ST )|Ss = x

])

= re−r(T−s)E
[
g(ST )|Ss = x

]
+ e−r(T−s) ∂

∂s E
[
g(ST )|Ss = x

]
+ e−r(T−s)rx ∂

∂x E
[
g(ST )|Ss = x

]
+ e−r(T−s) 1

2σ2x2 ∂2

∂x2 E
[
g(ST )|Ss = x

]
= rV (x , s) + e−r(T−s)L

[
E
[
g(ST )|Ss = x

]]
.
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Kolmogorov backward equation in Black-Scholes model

But

L
[
E
[
g(ST )|Ss = x

]]
= L

[ ∫ ∞

−∞
g(y)f (y , T |s, x)dy

]
=
∫ ∞

−∞
g(y)L

[
f (y , T |s, x)

]
dy (can be justified)

= 0
as

L
[
f (y , T |s, x)

]
= 0

by the Kolmogorov backward equation.

So
L[V (x , s)] = rV (x , s) + e−r(T−s)L

[
E
[
g(ST )|Ss = x

]]
= rV (x , s)

or
∂V (x , s)

∂s + rx ∂V (x , s)
∂x + 1

2σ2x2 ∂2V (x , s)
∂x2 = rV (x , s)

which is (5).
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Stochastic integrals with respect to Brownian motion

Recall that the diffusion process with the drift coefficient a(s, x) and
diffusion coefficient b(s, x) has the following representation

Xs+h − Xs = a(s, Xs)h + b(s, Xs)(Bs+h − Bs) + o(h).

After taking the limit h → 0 the stochastic differential equation notation

dXs = a(s, Xs)ds + b(s, Xs)dBs

is employed.

This should be read as shorthand for the (mathematically correct)
stochastic integral equation form

Xt = X0 +
∫ t

0
a(s, Xs)ds +

∫ t

0
b(s, Xs)dBs .
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Stochastic integrals with respect to Brownian motion

The integral ∫ t

0
a(s, Xs)ds

is a Lebesgue integral.

The integral ∫ t

0
b(s, Xs)dBs

is a stochastic integral.

Note that both integrals have a random integrand.

There exist several different constructions (not all equivalent) of
stochastic integrals.

We shall always use the most popular construction called the Ito
stochastic integral.
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Stochastic integrals with respect to Brownian motion

TERMINOLOGY.
We say that a stochastic process (random function) ft is adapted to the
filtration Ft generated by a standard Brownian motion Bt if for any t
the value ft is completely defined by {Bs , s ≤ t}.

We can interpret the filtration Ft as the available information (or history)
of all possible events involving Bt up to time t, including values of the
process itself.

Example.
Adapted functions.

ft = Bt/2, ft = B2
t , ft =

∫ t

0
Bsds, ft = max

s≤t
Bs

Non-adapted functions.

ft = B2
t+1, ft =

∫ t+10

0
Bsds, ft = max

t≤s≤t+1
Bs

——————————————————————————————
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Stochastic integrals with respect to Brownian motion

CONSTRUCTION OF ITO INTEGRAL.
Let ft be an adapted function and consider a uniform partition tk = k t

n ,
k = 0, 1, . . . , n, and denote

Zn =
n∑

k=1
ftk−1(Btk − Btk−1) =

n∑
k=1

ftk−1∆Btk .

It can be shown (K. Ito was the first who did this) that under the
assumption

P
( t∫

0

f 2
s ds < ∞

)
= 1

there exists a limit limn→∞ Zn (in probability).

This limit is called a stochastic integral of ft with respect to Bt and is
denoted

lim
n→∞

Zn :=
t∫

0

fsdBs .
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Stochastic integrals with respect to Brownian motion

Problem.
Show that

t∫
0

BsdBs = B2
t − t
2 .

Solution. Consider a uniform partition tk = k t
n , k = 0, 1, . . . , n, and

denote

Zn =
n∑

k=1
Btk−1(Btk − Btk−1).

As

Btk−1(Btk − Btk−1) =
(B2

tk
− B2

tk−1
)

2 −
(Btk − Btk−1)2

2
we have

Zn = B2
t

2 − 1
2

n∑
k=1

(Btk − Btk−1)2.
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Stochastic integrals with respect to Brownian motion

We can write
(Btk − Btk−1)2 = t

n ξ2
k

where
ξk =

Btk − Btk−1√
t/n

∼ N(0, 1)

and independent.

So we have
n∑

k=1
(Btk − Btk−1)2 = t

∑n
k=1 ξ2

k
n

P→ t

as by the Law of Large Numbers∑n
k=1 ξ2

k
n

P→ 1.

The desired result follows.
——————————————————————————————
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Stochastic integrals with respect to Brownian motion

Proposition 1 (Wiener stochastic integral)
Let f (t) be a continuously differentiable non-random function such that∫ t

0
f (s)2ds < ∞

and let B be a standard BM.

Then ∫ t

0
f (s)dBs ∼ N

(
0,

∫ t

0
f 2(s)ds

)
and ∫ t

0
f (s)dBs = f (t)Bt −

∫ t

0
Bs

d
ds f (s)ds.

The last equation is known as N. Wiener’s definition of stochastic
integrals – Ito later extended this to random integrands.
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Stochastic integrals with respect to Brownian motion

The stochastic integral shares properties with more familiar Lebesgue
integrals.

Proposition 2 (Properties of stochastic integral)
1. ∫ t

0
(c1gs + c2fs)dBs = c1

∫ t

0
gsdBs + c2

∫ t

0
fsdBs

2. for t ≥ s ∫ s

0
gudBu +

∫ t

s
gudBu =

∫ t

0
gudBu

Proof. Omitted.
——————————————————————————————
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Stochastic integrals with respect to Brownian motion

Theorem 1 (Expectations of stochastic integral)

1. If E
[√∫ T

0 g2
s ds
]

< ∞, then for all t ≤ T

E
[ ∫ t

0
gsdBs

]
= 0.

2. If E
[ ∫ T

0 g2
s ds
]

< ∞, then for all t ≤ T

E
[(∫ t

0
gsdBs

)2
]

= E
[ ∫ t

0
g2

s ds
]

=
∫ t

0
E
[
g2

s
]
ds.

Note that

E
[ ∫ T

0
g2

s ds
]

< ∞ ⇒ E
[√∫ T

0
g2

s ds
]

< ∞.

Proof. Omitted.
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Stochastic integrals with respect to Brownian motion

Definition 2 (Ito representation 1)
We say that an adapted process Xt has the Ito representation (i.e. is an
Ito process) if

Xt = X0 +
t∫

0

asds +
t∫

0

bsdBs

where at and bt are regular adapted processes such that∫ t

0
|as |ds < ∞ and

∫ t

0
b2

s ds < ∞.

Note that in this case the stochastic integral is the Ito integral
introduced earlier.
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Stochastic integrals with respect to Brownian motion

Examples.
1. Recall

B2
t = t + 2

t∫
0

BsdBs

which we showed earlier in the chapter.

2. If f (t) is a continuously differentiable non-random function then

f (t)Bt =
∫ t

0
Bs

d
ds f (s)ds +

∫ t

0
f (s)dBs .

——————————————————————————————
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Stochastic integrals with respect to Brownian motion

Theorem 2 (Ito formula)
Let a regular adapted process Xt have the Ito representation

Xt = X0 +
t∫

0

asds +
t∫

0

bsdBs

and a function g(t, x) have continuous derivatives ∂
∂t g(t, x) and

∂2

∂x2 g(t, x). Then the process g(t, Xt) has the Ito representation

g(t, Xt) = g(0, X0)

+
∫ t

0

( ∂

∂s g(s, Xs) + as
∂

∂x g(s, Xs) + 1
2b2

s
∂2

∂x2 g(s, Xs)
)

ds

+
t∫

0

bs
∂

∂x g(s, Xs)dBs .
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Stochastic integrals with respect to Brownian motion

This is often written in the shorthand form

dg(t, Xt) =
( ∂

∂t g(t, Xt) + at
∂

∂x g(t, Xt) + 1
2b2

t
∂2

∂x2 g(t, Xt)
)

dt

+ bt
∂

∂x g(t, Xt)dBt .

Also note that the spatial derivative is understood in the sense

∂

∂x g(t, Xt) ≡ ∂

∂x g(t, x)|x=Xt .
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Stochastic integrals with respect to Brownian motion

Proof (outline).
We consider the case at = 0, g(t, x) = g(x).

Set
tk = k t

n so that δ = t
n → 0 as n → ∞.

Then
Xtk − Xtk−1 = btk−1(Btk − Btk−1) + o(δ)

and by Taylor expansion

g(Xtk ) − g(Xtk−1)

= d
dx g(Xtk−1)(Xtk − Xtk−1) + 1

2
d2

dx2 g(Xtk−1)(Xtk − Xtk−1)2 + o(δ)

= d
dx g(Xtk−1)btk−1(Btk − Btk−1)

+ 1
2

d2

dx2 g(Xtk−1)b2
tk−1

(Btk − Btk−1)2 + o(δ).
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Stochastic integrals with respect to Brownian motion

Using E [Btk − Btk−1 ]2 = δ and summing over the increments gives

g(Xt) − g(X0) =
∑

k

d
dx g(Xtk−1)btk−1(Btk − Btk−1)

+
∑

k

1
2

d2

dx2 g(Xtk−1)b2
tk−1

δ

+
∑

k

1
2

d2

dx2 g(Xtk−1)b2
tk−1

(
(Btk − Btk−1)2 − δ

)
+ o(1)

=
∫ t

0

d
dx g(Xs)bsdBs +

∫ t

0

1
2

d2

dx2 g(Xs)b2
s ds

as δ → 0 if we can show that∑
k

1
2g ′′

xx (Xtk−1)b2
tk−1

(
(Btk − Btk−1)2 − δ

)
= o(1).
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Stochastic integrals with respect to Brownian motion

Definition 3 (Ito representation 2)
Let Xt have the Ito representation

Xt = X0 +
t∫

0

asds +
t∫

0

bsdBs

and let ft be a regular adapted process such that∫ t

0
|fsas |ds < ∞ and

∫ t

0
|fsbs |2ds < ∞.

Then by definition the process
∫ t

0 fsdXs has the representation∫ t

0
fsdXs =

∫ t

0
fsasds +

∫ t

0
fsbsdBs .
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