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Recommended texts

Books on analysis
Principles of Mathematical Analysis [Rudin, 1976]
Real and Complex Analysis [Rudin, 1987]

Books on probability and statistics
Mathematical Statistics and Data Analysis [Rice, 2007] (basic –
assumed knowledge)
Mathematical Statistics with Applications [Wackerly et al., 2008]
(basic – assumed knowledge)
A Course in Probability Theory [Chung, 2001] (advanced)
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Recommended texts

Books on stochastic processes and mathematical finance
Elements of Stochastic Modelling [Borokov, 2014]
A Benchmark Approach to Quantitative Finance
[Platen and Heath, 2006]
Stochastic Calculus for Finance I [Shreve, 2005]
Stochastic Calculus for Finance II [Shreve, 2004] (advanced)
Financial Modelling with Jump Processes [Cont and Tankov, 2004]
(advanced)
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Chapter outline

Topics:
History of probability theory
Frequency approach to probability
Introduction to Kolmogorov’s axiomatic approach
Conditional probability and independent events
Scalar RVs

distribution (discrete case)
examples (discrete case)
distribution (continuous case)
examples (continuous case)
expectation of functions
expected value
MGF
CF
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Chapter outline

Topics:
Vector RVs

expected value
joint distribution
marginal distributions
expectation of functions
MGF and CF
covariance
autocovariance

Independent RVs
joint distribution and expectation

Conditional expectation

5 / 55



History of probability theory

17th century
classical probability, combinatorial methods
Pascal B. (1623-1662), Fermat P. (1607-1665)

18th century
geometric probabilities, law of large numbers (1713)
Bernoulli J. (1654-1705), Euler L. (1707-1783)

19th century
central limit theorem, analytical methods
Gauss C. (1777-1855), Poisson S.D. (1781-1840)

20th century
axiomatic approach, stochastic processes
Markov A.A. (1856-1922), Kolmogorov A.N. (1903-1987), Wiener
N. (1894-1964)
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Frequency approach to probability

Outcomes of random experiments are not predictable.

What are the probabilities of different outcomes, or events, from random
experiments?

The probability of an event can be measured by the relative frequency of
the event.

Let n be the total number of independent trials of a random experiment.

Let n(A) be the number of these trials in which the event A occurred.

The relative frequency of the event A is given by the ratio

n(A)
n .
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Frequency approach to probability

The frequency approach defines the probability of the event A as

P(A) = lim
n→∞

n(A)
n

or, for large n
P(A) ≈ n(A)

n .

So, if you know n(A) you have the approximation n(A)
n .

Often it is used in the opposite direction: if you know P(A) then you can
predict n(A). For large n it approximately equals P(A)n.

A general question: how to formally define P(A)?

All mathematicians and statisticians now use Kolmogorov’s axiomatic
approach.
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Introduction to Kolmogorov’s axiomatic approach

Modern theory on probability and stochastic processes employs an
axiomatic approach.

From these axioms, assertions are formulated, proved and an increasingly
detailed theory constructed.

The power of this method lies in the avoidance of mathematical
inconsistencies, fallacies and paradoxes.

However, a need for advanced concepts and techniques requires of
students a solid training in mathematics.

For our purposes these technical details are not required, but we will
provide a (very) brief introduction to some of these concepts.
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Introduction to Kolmogorov’s axiomatic approach

The axiomatic approach revolves around the triple

(Ω, F , P)

called a probability space.

The reasons for considering such an object are technical but essentially
allow

random variables (and stochastic processes) to be constructed as
measurable functions on (Ω, F , P)
expectations of functions of these random variables (and stochastic
processes) to be defined as Lebesgue integrals on (Ω, F , P).

We won’t go into all the details, but will describe the main features and
introduce others as needed in later chapters.

See [Chung, 2001] for a comprehensive treatment of random variables.
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Introduction to Kolmogorov’s axiomatic approach

Definition 1 (sample space Ω and events)
The sample space Ω is the set of all (mutually exclusive) elementary
events ω ∈ Ω.

Any E ⊆ Ω is called an event, which we write in shorthand as

E = {ω|“inclusion criterion”},

where the “inclusion criterion” is a rule that determines whether ω ∈ E
or ω ∈ E c .

So any event is a union of elementary events.

Note that the definition above includes
the null event ∅ ⊆ Ω
the sure event Ω ⊆ Ω.
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Introduction to Kolmogorov’s axiomatic approach

Set notation
Consider the events E , E1, E2 ⊆ Ω.

Then
E1 ∩ E2 = {ω|ω ∈ E1 and ω ∈ E2} (intersection)
E1 ∪ E2 = {ω|ω ∈ E1 or ω ∈ E2} (union)
E c = Ω \ E (compliment of E )
E1 \ E2 = E1 ∩ E c

2 (compliment of E2 in E1)
⊆ Ω are also events.

If E1 ∩ E2 = ∅ then the events E1 and E2 are said to be disjointed.
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Introduction to Kolmogorov’s axiomatic approach

Definition 2 (sigma-algebra F)
A class F of events is called as sigma-algebra (or sigma-field) if

1 Ω ∈ F
2 if E ∈ F then E c ∈ F .
3 if E1 ∈ F and E2 ∈ F then E1 ∪ E2 ∈ F
4 if Ei ∈ F for all i = 1, 2, . . . then ∪∞

i=1Ei ∈ F .

Note that
∅ ∈ F by (1) and (2)
E1 ∩ E2 = (E c

1 ∪ E c
2 )c ∈ F by (2) and (3)

∩∞
i=1Ei = (∪∞

i=1E c
i )c ∈ F by (2) and (4)

and De Morgan’s laws.

Examples include
F = {∅, Ω} (trivial sigma-algebra)
F = {∅, E , E c , Ω} (sigma-algebra generated by event E ).
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Introduction to Kolmogorov’s axiomatic approach

Definition 3 (probability measure P)
The set function P is called a probability measure if

1 if E ∈ F then 0 ≤ P(E ) ≤ 1
2 P(∅) = 0 and P(Ω) = 1
3 if E1, E2 ∈ F and E1 ∩ E2 = ∅ then P(E1 ∪ E2) = P(E1) + P(E2)
4 if Ei ∈ F for any i = 1, 2, . . . and Ei ∩ Ej = ∅ when i ̸= j then

P(∪∞
i=1Ei) =

∑∞
i=1 P(Ei).

That is, a probability measure can be considered as the mapping
P : F → [0, 1].

It can be shown that if E1, E2 ∈ F then
P(E1 \ E2) = P(E1) − P(E1 ∩ E2)
P(E1) ≤ P(E2) if E1 ⊂ E2

P(E1 ∪ E2) = P(E1) + P(E2) − P(E1 ∩ E2).
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Conditional probability and independent events

In applications one often works with the notion of conditional probability.

Definition 4 (conditional probability)
Let E1, E2 ⊆ Ω. If P(E2) > 0 then the ratio

P(E1|E2) = P(E1 ∩ E2)
P(E2)

is called the conditional probability that E1 will occur given E2 has
occurred.

A conditional probability is a probability and so satisfies the conditions of
Definition 3.
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Conditional probability and independent events

Conditional probability simplifies in the case of independent variables.

Definition 5 (independent event)
Events E1, E2 ⊆ Ω are independent if

P(E1 ∩ E2) = P(E1)P(E2).

If P(E1), P(E2) > 0 then by Definition 4

P(E1|E2) = P(E1 ∩ E2)
P(E2) = P(E1)P(E2)

P(E2) = P(E1)

and similarly

P(E2|E1) = P(E2 ∩ E1)
P(E1) = P(E2)P(E1)

P(E1) = P(E2).
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Conditional probability and independent events

Finally for this section, an important result that we will use with Markov
chains.

Theorem 1 (total law of probability)
Let events Ei , i ≥ 1, form a partition of Ω, i.e. ∪iEi = Ω and Ei ∩ Ej = ∅
for i ̸= j , and suppose P(Ei) > 0 for all i .

Then for any event A

P (A) =
∑
i≥1

P(A ∩ Ei) =
∑
i≥1

P(A|Ei)P(Ei).
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Scalar RVs

A scalar random variable (RV) can be used to model a numerical
outcome of some random experiment or phenomenon.

Mathematically, a RV X on the probability space (Ω, F , P) is a function

X : Ω → R

where R ⊆ R, i.e. some subset of the set of real numbers R.

The RV X is called
discrete if R is countable (e.g. the set of integers Z, natural
numbers N, some countable subset of R etc.)
continuous if R is uncountable (e.g. the set of real numbers R,
non-negative real numbers R≥0, some interval of R etc.).

18 / 55



Scalar RVs

A RV can be more precisely defined as a function that maps between two
measurable spaces.

Definition 6 (random variable)
A RV X on (Ω, F , P) is an F-measurable function

X : (Ω, F) → (R, G)

where R ⊆ R and G a sigma-algebra over R.

By F-measurable we mean that for each G ∈ G, the inverse image (or
pre-image)

X −1(G) = {ω|X (ω) ∈ G} ≡ {X ∈ G} ∈ F .

The nature of G depends on whether X is discrete or continuous and
details of its construction are omitted.
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Scalar RVs – distribution (discrete case)

The distribution of a RV is its most important property and describes
how probability is distributed about outcomes of the RV.

Definition 7 (probability functions of discrete scalar RV)
If X is a discrete RV then it has a probability mass function (PMF)
pX ∈ [0, 1] defined as

pX (b) = P(X = b) ≡ P
(
{ω|X (ω) = b}

)
with the property ∑

x
pX (x) = 1.

The cumulative distribution function (CDF) FX ∈ [0, 1] is defined as

FX (b) = P(X ≤ b) ≡ P
(
{ω|X (ω) ≤ b}

)
=

∑
x≤b

pX (x).

Note the last follows from {X ≤ b} = ∪u≤b{X = u}. 20 / 55



Scalar RVs – examples (discrete case)

Example (binomial distribution). Let 0 ≤ p ≤ 1 and the RV X take
the values x ∈ {0, 1, . . . , n}. The PMF of X is given by

pX (x) = P(X = x) =
(

n
x

)
px (1 − p)n−x

where the binomial coefficients(
n
x

)
= n!

x !(n − x)! .

In this case we write X ∼ B(n, p) to indicate X has the binomial
distribution with parameters n, p.

Application. Consider a random experiment with probability of success p
(a “Bernoulli trial”). If n replications are performed the probability that x
will be successful is pX (x).
——————————————————————————————

21 / 55



Scalar RVs – examples (discrete case)

Example (geometric distribution). Let 0 ≤ p ≤ 1 and the RV X take
the values x ∈ {1, 2, . . .}. The PMF of X is given by

pX (x) = P(X = x) = p(1 − p)x−1.

In this case we write X ∼ Geo(p).

Application. The probability that the first success of a Bernoulli trial (see
above) occurs on the x -th replication.
——————————————————————————————
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Scalar RVs – examples (discrete case)

Example (Poisson distribution). Let λ > 0 and the RV X take the
values x ∈ {0, 1, . . .}. The PMF of X is given by

pX (x) = P(X = x) = e−λ λx

x ! .

In this case we write X ∼ Poisson(λ).

Application. Queueing theory, Poisson process (more later).
——————————————————————————————
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Scalar RVs – distribution (continuous case)

Definition 8 (probability functions of absolutely continuous scalar RV)
If X is an absolutely continuous RV then it has a probability density
function (PDF) fX ∈ R≥0 satisfying

P(a ≤ X ≤ b) ≡ P
(
{ω|a ≤ X (ω) ≤ b}

)
=

∫ b

a
fX (x)dx

with the property ∫ ∞

−∞
fX (x)dx = 1.

The cumulative distribution function (CDF) FX ∈ [0, 1] is defined as

FX (b) = P(X ≤ b) ≡ P
(
{ω|X (ω) ≤ b}

)
=

∫ b

−∞
fX (x)dx .

Absolutely continuous means d
dx FX (x) = fX (x) almost everywhere.
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Scalar RVs – examples (continuous case)

Example (uniform distribution). The RV X has the uniform
distribution on the interval [a, b] if its PDF is given by

fX (x) =
{

1
b−a if x ∈ [a, b],
0 if x /∈ [a, b].

In this case we write X ∼ U(a, b).

Application. Numerical integration (more later).
——————————————————————————————
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Scalar RVs – examples (continuous case)

Example (exponential distribution). The RV X has the exponential
distribution with parameter λ > 0 if its PDF is given by

fX (x) =
{

λe−λx if x ≥ 0,

0 if x < 0.

In this case we write X ∼ Exp(λ).

Application. Waiting times, compound Poisson process (more later).
——————————————————————————————
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Scalar RVs – examples (continuous case)

Example (normal distribution). The RV X has the normal (Gaussian)
distribution with parameters µ and σ2 > 0 if its PDF is given by

fX (x) = 1√
2πσ

e− (x−µ)2

2σ2

for all x ∈ R.

In this case we write X ∼ N(µ, σ2).

Application. Central limit theorem, option pricing (more later).
——————————————————————————————
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Scalar RVs – examples (continuous case)

Example (gamma distribution). The RV X has gamma distribution
with parameters α, β > 0 if its PDF is given by

f (x) =

 β−α

Γ(α) xα−1e−x/β if x > 0,

0 if x ≤ 0

where
Γ(α) =

∫ ∞

0
xα−1e−x dx .

In this case we write X ∼ Gamma(α, β).

Application. Climatology, queuing models.
——————————————————————————————
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Scalar RVs – expectation of functions

Definition 9 (expectation of functions of scalar RV)
Let X be a scalar RV and g : R → R (or subsets of this mapping). Then

E [g(X )] =
∫

Ω
g(X (ω))dP(ω) =

∫ ∞

−∞
g(x)dFX (x)

=
{∑

x g(x)pX (x), if X discrete∫ ∞
−∞ g(x)fX (x)dx , if X absolutely continuous

where g(x) is such that

E [|g(X )|] =
∫

Ω
|g(X (ω))|dP(ω) =

∫ ∞

−∞
|g(x)|dFX (x)

=
{∑

x |g(x)|pX (x) < ∞,∫ ∞
−∞ |g(x)|fX (x)dx < ∞.

If the last does not hold then E [g(X )] does not exist.
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Scalar RVs – expected value

The previous definition is used to obtain the expected value defined as

E [X ] =
∫

Ω
X (ω)dP(ω) =

∫ ∞

−∞
xdFX (x).

The following properties follow directly from the definition above.

Property 1.
Let X1 and X2 be integrable RVs. Then if

E [|c1X1 + c2X2|] < ∞
for any c1, c2 ∈ R then

E [c1X1 + c2X2] = c1E [X1] + c2E [X2].
——————————————————————————————

Property 2.
If E (|X |) < ∞ then X is integrable and

|E [X ]| ≤ E [|X |].
—————————————————————————————— 30 / 55



Scalar RVs – MGF

Definition 10 (moment generating function – scalar RV)
The moment generating function (MGF) MX (u), u ∈ R ⊆ R (including
0), of a scalar RV X is defined as

MX (u) = E [euX ] =
∫ ∞

−∞
eux dFX (x)

under the assumption that this expectation exists.

Note that moments can be calculated as

E [X k ] = E [X keuX ]|u=0 = dk

duk E [euX ]|u=0 = dk

duk MX (u)|u=0

provided the derivatives exist for all u ∈ (u0, u1) where u0 < 0 < u1.
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Scalar RVs – CF

Recall Euler’s formula e iux = cos(ux) + i sin(ux).

Definition 11 (characteristic function – scalar RV)
The characteristic function (CF) φX (u), u ∈ R, of a RV variable X is
defined as

φX (u) = E [e iuX ] =
∫ ∞

−∞
e iux dFX (x)

which always exists.

Note that moments can be calculated as

E [X k ] = E [X ke iuX ]|u=0 = 1
ik

dk

duk E [e iuX ]|u=0 = 1
ik

dk

duk φX (u)|u=0,

where the derivatives exist as long as E [|X k |] < ∞.

32 / 55



Vector RVs

A random vector X on (Ω, F , P) is denoted

X := (X1, . . . , Xn)T =


X1
...

Xn


and a random matrix X on (Ω, F , P)

X := (Xi,j)1≤i≤m,1≤j≤n =


X1,1 · · · X1,n

...
. . .

...
Xm,1 · · · Xm,n

 .

Each component of X is a scalar RV as previously described.

The mapping and F-measurability criteria is a generalisation of that for a
scalar RV described in Definition 6 (details omitted).
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Vector RVs – expected value

For random vectors and random matrices, expectation is taken
component wise, i.e. for random vectors

E [X ] :=
(
E [X1], . . . , E [Xn]

)T =


E [X1]

...
E [Xn]


and for random matrices

E [X ] :=
(
E [Xi,j ]

)
1≤i≤m,1≤j≤n =


E [X1,1] · · · E [X1,n]

...
. . .

...
E [Xm,1] · · · E [Xm,n]

 .

The component-wise expectation has been previously defined.
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Vector RVs – joint distribution

Definition 12 (joint probability functions of vector RV)
Let X = (X1, . . . , Xn)T be a vector RV. Then the joint CDF FX ∈ [0, 1]
is defined as

FX(b) = P(X ≤ b) = P(X1 ≤ b1, . . . , Xn ≤ bn)

=
∑

x1≤b1

· · ·
∑

xn≤bn

pX
(
x1, . . . , xn

)
if X discrete

=
∫ b1

−∞
· · ·

∫ bn

−∞
fX(x1, . . . , xn)dxn · · · dx1

if X absolutely continuous.

The functions pX ∈ [0, 1] and fX ∈ R≥0 are called the joint PMF and
PDF respectively.

The functions pX and fX sum and integrate to 1 respectively.
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Vector RVs – marginal distributions

Joint probability functions can be used to obtain the marginal functions.

Corollary 1 (marginal probability functions of discrete vector RV)
Let X = (X1, . . . , Xn)T be discrete vector RV with joint PMF pX and
joint CDF FX . The marginal CDF of X1 can be obtained as

FX1(b) = P(X1 ≤ b) = lim
x2,...,xn→∞

FX(b, x2, . . . , xn)

=
∑
x1≤b

∑
x2

· · ·
∑
xn

pX(x1, x2, . . . , xn)

=
∑
x1≤b

pX1(x1)

where the marginal PMF of X1 is

pX1(x1) =
∑

x2

· · ·
∑
xn

pX(x1, x2, . . . , xn).
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Vector RVs – marginal distributions

Now the absolutely continuous case.

Corollary 2 (marginal prob. funcs of absolutely continuous vector RV)
Let X = (X1, . . . , Xn)T be an absolutely continuous vector RV with joint
PDF fX and joint CDF FX . The marginal CDF of X1 can be obtained as

FX1(b) = P(X1 ≤ b) = lim
x2,...,xn→∞

FX(b, x2, . . . , xn)

=
∫ b

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
fX(x1, x2, . . . , xn)dxn · · · dx2dx1

=
∫ b

−∞
fX1(x1)dx1

where the marginal PDF of X1

fX1(x1) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
fX(x1, x2, . . . , xn)dxn · · · dx2.
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Vector RVs – marginal distributions

The previous definition can be modified to obtain the marginal probability
functions of the other components X2, . . . Xn of the random vector X .

Note how the marginals are obtained by summing/integrating over the
components being excluded.

Generalising this procedure allows one to obtain the marginal joint
probability functions of any subset of the components X1, . . . Xn of the
random vector X .

For instance, the marginal joint PDF of components X1, Xn of absolutely
continuous RV X can be obtained as

fX1,Xn (x1, xn) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
fX(x1, x2, . . . , xn−1, xn)dxn−1 · · · dx2.
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Vector RVs – expectation of functions

Definition 13 (expectation of functions of vector RV)
Let X = (X1, . . . , Xn)T be a vector RV and g : Rn → R (or subsets of
this mapping). Then

E [g(X)] =
∫

Ω
g(X(ω))dP(ω)

=
∫ ∞

−∞
· · ·

∫ ∞

−∞
g(x1, . . . , xn)dFX(x1, . . . , xn)

=
∑

x1

· · ·
∑
xn

g
(
x1, . . . , xn

)
pX

(
x1, . . . , xn

)
if X discrete

=
∫ ∞

−∞
· · ·

∫ ∞

−∞
g(x1, . . . , xn)fX(x1, . . . , xn)dxn · · · dx1

if X absolutely continuous.

The expectation exists only if the sum/integral converges absolutely.
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Vector RVs – MGF and CF

Definition 14 (moment generating function – vector RV)
The moment generating function (MGF) MX(u), u ∈ R ⊆ Rn (including
0), of a vector RV X = (X1, . . . , Xn)T is defined as

MX(u) = E [eu·X ]

under the assumption that this expectation exists.

Definition 15 (characteristic function – vector RV)
The characteristic function (CF) φX(u), u ∈ Rn, of a vector RV
X = (X1, . . . , Xn)T is defined as

φX(u) = E [e iu·X ]

which always exists.

There is a one-to-one correspondence between CFs (and MGFs where
these exist) and distributions.
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Vector RVs – covariance

Covariance is the expectation a particular function of random variables
and is a measure of linear association between RVs.

Definition 16 (covariance matrix)
Let X = (X1, . . . , Xm)T , Y = (Y1, . . . , Yn)T be vector RVs. Then

cov(X , Y ) = E
[
(X − E [X ])(Y − E [Y ])T ]

= E [XY T ] − E [X ]E [Y ]T

=
(

cov(Xi , Yj)
)

1≤i≤m,1≤j≤n

=


cov(X1, Y1) · · · cov(X1, Yn)

...
. . .

...
cov(Xm, Y1) · · · cov(Xm, Yn)

 .
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Vector RVs – autocovariance

A particular application is the autocovariance of X , defined as the square
symmetric matrix

cov(X , X) = E
[
(X − E [X ])(X − E [X ])T ]

=
(

cov(Xi , Xj)
)

1≤i,j≤n

=


cov(X1, X1) · · · cov(X1, Xn)

...
. . .

...
cov(Xn, X1) · · · cov(Xn, Xn)

 .

Note that since cov(Xi , Xj) = cov(Xj , Xi) we have the symmetry property(
cov(X , X)

)T = cov(X , X).

The diagonal components of cov(X , X) are the variances, e.g.

var(X1) = cov(X1, X1) = E
[
(X1 − E [X1])2]

.
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Vector RVs – autocovariance

Note that in addition to being symmetric, the autocovariance matrix
cov(X , X) is nonnegative-definite (or positive semi-definite).

To see this, observe for any u ∈ Rn we have the quadratic form

u · cov(X , X)u = uT E
[
(X − E [X ])(X − E [X ])T ]

u
= E

[
uT (X − E [X ])(X − E [X ])T u

]
= E

[
((X − E [X ])T u)T (X − E [X ])T u

]
= E

[
((X − E [X ])T u) · ((X − E [X ])T u)

]
= E

[
|(X − E [X ])T u|2

]
≥ 0.
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Independent RVs – joint distribution and expectation

Definition 17 (joint distribution of independent RVs)
Let X and Y be independent RVs. Then the joint CDF is obtained as

FX ,Y (a, b) = P(X ≤ a, Y ≤ b) = P(X ≤ a)P(Y ≤ b)
= FX (a)FY (b)

=
∑
x≤a

pX (x)
∑
y≤b

pY (y)

if X , Y discrete

=
∫ a

−∞
fX (x)dx

∫ b

−∞
fY (y)dy

if X , Y absolutely continuous.

This leads to the following result.
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Independent RVs – joint distribution and expectation

Corollary 3 (joint distribution and expectation of independent RVs)
Let X and Y be independent RVs.

If the RVs are discrete then the joint PMF is given by

pX ,Y (x , y) = pX (x)pY (y).

If the RVs are absolutely continuous then the joint PDF is given by

fX ,Y (x , y) = fX (x)fY (y).

Moreover, for functions g , h : R → R (or subsets of this mapping) the
expectation of the product

E [g(X )h(Y )] = E [g(X )]E [h(Y )]

as long as the RHS expectations are properly defined.

These results can be extended to larger collections of independent RVs
and also to independent vectors RVs. 45 / 55



Conditional expectation

In applications of probability and stochastic processes conditional
expectation plays important roles. First the discrete scalar case.

Definition 18 (conditional expectation – discrete RVs)
If X and Y are discrete RVs we define the conditional PMF of X given
Y = y with pY (y) > 0 by

pX |Y (x , y) = P(X = x |Y = y) = pX ,Y (x , y)
pY (y) .

The conditional expectation of X given Y = y with pY (y) > 0 is defined
by

E [X |Y = y ] =
∑

x
xpX |Y (x , y).

The expectation is properly defined only if the sum converges absolutely.
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Conditional expectation

We also have the continuous scalar case.

Definition 19 (conditional expectation – absolutely continuous RVs)
If (X , Y )T is absolutely-continuous we define the conditional PDF of X
given Y = y with fY (y) > 0 by

fX |Y (x , y) = fX ,Y (x , y)
fY (y) .

The conditional expectation of X given that Y = y with fY (y) > 0 is
defined by

E [X |Y = y ] =
∫ ∞

−∞
xfX |Y (x , y)dx .

The expectation is properly defined only if integral converges absolutely.

Generalises to functions g(X ) and different conditioning events.
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Conditional expectation

Note that in the previous two definitions the conditional expectation is
non-random as the conditioning variable has been fixed.

If the conditioning variable is not fixed then the conditional expectation is
a random function of the conditioning variable.

Definition 20 (conditional expectation as random function)
Let X and Y be scalar RVs. The RV

g(Y ) = E [X |Y ]

is said to be the conditional expectation X given Y .

Discussion of what is meant by conditioning on Y rather than some
event {Y = y} is deferred until necessary.

These last three definitions can be extended to the case where X and Y
are vector RVs.
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Conditional expectation

Conditional expectation can be technical to deal with, so where possible
calculations are simplified using the results in the following proposition.

Proposition 1 (properties of conditional expectation)
Under the condition of the existence of the expectations

1. E [c1X1 + c2X2|Y ] = c1E [X1|Y ] + c2E [X2|Y ],
2. E

[
E [X |Y ]

]
= E [X ],

3. E [g(Y )X |Y ] = g(Y )E [X |Y ],
4. E [X |Y ] = E [X ] if X , Y are independent.

Note that Parts 2 and 3 imply that for any bounded function g(y)

E [g(Y )X ] = E [E [g(Y )X |Y ]
]

= E
[
g(Y )E [X |Y ]

]
.

The second property above is known as the “law of iterated conditioning”
or the “tower law”.

49 / 55



Conditional expectation

Conditional expectation possesses nice properties, as the next theorem
demonstrates.

As stated, the theorem is for scalar RVs X and Y but generalises to the
vector case.

Theorem 2 (cond. expectation as best-mean-square predictor)
Let E [X 2] < ∞ and Y be any random vector. The conditional
expectation

Z := E [X |Y ],

as a function of Y , minimises the distance E [(X − g(Y ))2] amongst all
functions g(Y ) such that E [g2(Y )] < ∞.

Interpretation.
E [X |Y ] is the best predictor of X based on Y in a mean-square sense.
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Conditional expectation

Proof.
Let g(y) be an arbitrary function such that E [g2(Y )] < ∞.

Then

E [(X − g(Y ))2] = E [(X − Z + Z − g(Y ))2]
= E [(X − Z )2] + 2E [(X − Z )(Z − g(Y ))] + E [(Z − g(Y ))2].

By properties of conditional expectation

E [(X − Z )(Z − g(Y ))]
= E

[
E [(X − Z )(Z − g(Y ))|Y ]

]
(by Part 2 of Prop. 1)

= E
[
(Z − g(Y ))E [X − Z |Y ]

]
(by Part 3 of Prop. 1).
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Conditional expectation

But

E [X − Z |Y ] = E
[
X − E [X |Y ]|Y

]
(Z = E [X |Y ])

= E [X |Y ] − E
[
E [X |Y ]|Y

]
= E [X |Y ] − E [X |Y ] (E [X |Y ] is a function of Y )
= 0

hence
E [(X − g(Y ))2] = E [(X − Z )2] + E [(Z − g(Y ))2].

So it is clear that the minimum of E [(X − g(Y ))2] is achieved when
g(Y ) = Z = E [X |Y ]!
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Conditional expectation

Exercise.
Let X = cY + Z where the RVs Y and Z are independent and c ∈ R.

Show that
E [X |Y ] = cY + E [Z ].

Solution. Using Proposition 1 we have

E [X |Y ] = E
[
cY + Z |Y

]
= cE [Y |Y ] + E [Z |Y ] (by Prop. 1 Part 1)
= cYE [1|Y ] + E [Z |Y ] (by Prop. 1 Part 3)
= cYE [1|Y ] + E [Z ] (by Prop. 1 Part 4)
= cY + E [Z ].

——————————————————————————————

As we will see in Chapter 2, for normal (Gaussian) RVs there is a well
developed theory of conditional expectation.
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