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Constructing Gaussian vector RVs

We begin by providing two (equivalent) definitions of joint Gaussian
random vectors.

The first definition is based on scalar Gaussian RVs introduced in Chapter
1.

Definition 1 (Gaussian random vector 1)
We say that the random vector X = (X1, . . . , Xn)T has a joint Gaussian
(normal) distribution if it has the representation

X = m + Lξ

where m ∈ Rn is a non-random vector, L ∈ Rn×k is a non-random
matrix, ξ = (ξ1, . . . , ξk)T , ξi ∼ N(0, 1) and ξ1, . . . , ξk are independent.

Terminology. The vector X = m + Lξ is called an affine-linear
transformation of the RV ξ.
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Constructing Gaussian vector RVs

Notation.
The joint Gaussian vector RV X has expectation

E [X ] = E [m + Lξ] = m + LE [ξ] = m

and autocovariance

Q := cov(X , X) = E [(X − m)(X − m)T ] = E [Lξ(Lξ)T ]
= LE [ξξT ]LT = LIkLT = LLT

and we write X ∼ N(m, Q).

Caution.
In most applications of this definition we will have k ≥ n.

However, there may be cases where k < n.

In this case the n × n autocovariance matrix Q will have rank k and will
not be invertible.

4 / 38



Constructing Gaussian vector RVs

The second definition is based on characteristic and moment generating
functions also introduced in Chapter 1.

Definition 2 (Gaussian random vector 2)
We say that the random vector X = (X1, . . . , Xn)T has a joint Gaussian
(normal) distribution if for all u ∈ Rn the CF of X has the form

φX(u) := E [e iu·X ] = e im·u− 1
2 u·Qu

or equivalently if the MGF of X has the form

MX(u) := E [eu·X ] = em·u+ 1
2 u·Qu

where m = E [X ] ∈ Rn and Q = cov(X , X) ∈ Rn×n and z · Qz ≥ 0 for
all z ∈ Rn.

Notation.
X ∼ N(m, Q).
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Constructing Gaussian vector RVs

The following example illustrates how both definitions can be used to
show that a vector of independent, standard normal RVs is joint Gaussian.

Example.
Let ξ = (ξ1, . . . , ξn)T , ξi ∼ N(0, 1) and ξ1, . . . , ξn are independent. We
have

E [ξi ] = 0 for all i ,
var(ξi) = cov(ξi , ξi) = 1 for all i

and by independence

cov(ξi , ξj) = 0 for all i ̸= j

so
m = 0 and Q = In

where 0 is the zero vector in Rn and In is the identity matrix in Rn×n.

So by Definition 1, ξ ∼ N(0, In). To see this take m = 0 and L = In in
this definition.
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Constructing Gaussian vector RVs

We can also obtain this directly via

φξ(u) =E [e iu·ξ] = E
[
e
∑n

k=1
iuk ξk

]
= E

[ n∏
k=1

e iuk ξk
]

=
n∏

k=1
E [e iuk ξk ] (by independence)

=
n∏

k=1
e− 1

2 u2
k (CF of N(0, 1) RV – proof as exercise)

=e− 1
2

∑n
k=1

u2
k = e− 1

2 u·u = e− 1
2 |u|2

. (1)

So by Definition 2, ξ ∼ N(0, In). To see this take m = 0 and Q = In in
this definition.
——————————————————————————————
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Constructing Gaussian vector RVs

Below is Mathematica code and plots of two 2D Gaussian RV PDFs.
ρ = 0.9;

g1 = Plot3D[PDF[MultinormalDistribution[{0, 0}, {{1, ρ}, {ρ, 1}}], {x, y}], {x, -4, 4},

{y, -4, 4}, PlotRange → All, AxesLabel → {x, y}, PlotLabel → "cov(X,Y) = 0.9"];

ρ = -0.5;

g2 = Plot3D[PDF[MultinormalDistribution[{0, 0}, {{1, ρ}, {ρ, 1}}], {x, y}], {x, -4, 4},

{y, -4, 4}, PlotRange → All, AxesLabel → {x, y}, PlotLabel → "cov(X,Y) = -0.5"];

GraphicsGrid[{{g1, g2}}]
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Constructing Gaussian vector RVs

Comments. Note that according to these definitions any deterministic
vector x has a Gaussian distribution x ∼ N(x, 0).

More generally, if Q > 0 (that is z · Qz > 0 for any z ̸= 0) then
det(Q) > 0.

This in turn means the inverse matrix Q−1 exists allowing the PDF for
X ∼ N(m, Q) to be defined as

fX(x) = 1
(2π)n/2

√
det(Q)

e− 1
2 (x−m)·Q−1(x−m).

Definition 1 is a kind of direct probabilistic approach based on use of a
fundamental RV (ξi ∼ N(0, 1) and independent). It is used in
simulations.

Definition 2 is a kind of analytical approach based on analytical tools
(the CF and MGF).
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Constructing Gaussian vector RVs

The following theorem shows the equivalence of the two previous
definitions.

Theorem 1 (constructing multivariate Gaussian RVs)
Definitions 1 and 2 are equivalent with m = E [X ] and Q = cov(X , X).

Proof.
Part 1. Showing Definition 1 implies Definition 2.

We have ξ = (ξ1, ..., ξn)T ∼ N(0, In) so

E [e iu·X ] = E [e iu·(m+Lξ)] = e im·uE [e iu·Lξ] (non-random terms)

= e im·uE [e iLT u·ξ] = e im·ue− 1
2 (LT u)·LT u

(replace u with LT u in equation (1) to see)

= e im·ue− 1
2 (LT u)T LT u = e im·u− 1

2 uT LLT u = e im·u− 1
2 u·(LLT )u

and we can conclude that Definition 2 holds with Q = LLT .
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Constructing Gaussian vector RVs

Part 2. Showing Definition 2 implies Definition 1.

We have X ∼ N(m, Q) and assume that z · Qz > 0 for all z ̸= 0
(shorthand Q > 0) so that det(Q) > 0.

We need to find L such that X = m + Lξ where ξ ∼ N(0, In).

There are many ways to find such an L, such as the Cholesky
decomposition

Q = HT H,

which exists because Q > 0. Here H is an upper triangular matrix and
HT is a lower triangular matrix.
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Constructing Gaussian vector RVs

Also because Q > 0 the inverse Q−1 exists and

det(Q) = det(HT H) = det(HT ) det(H) = (det(H))2

(det. of triangular matrix is product of diag. components)
> 0

so det(HT ) ̸= 0 showing (HT )−1 also exists.

Taking L = HT we have

X = m + HT ξ

or
ξ = (HT )−1(X − m) = (H−1)T (X − m)

by the transpose and inverse properties of real matrices.
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Constructing Gaussian vector RVs

Therefore

E [e iu·ξ] = E [e iu·(H−1)T (X−m)] = E [e i(H−1u)·(X−m)]

= e−i(H−1u)·mE [e i(H−1u)·X ] (non-random terms)

= e−i(H−1u)·me im·H−1u− 1
2 (H−1u)·QH−1u (by Definition 2)

= e− 1
2 uT (H−1)T QH−1u = e− 1

2 uT (HT )−1QH−1u = e− 1
2 uT Inu

= e− 1
2 u·u

as
Q = HT H ⇒ (HT )−1QH−1 = (HT )−1HT HH−1 = In.

So we see ξ ∼ N(0, In), or ξi ∼ N(0, 1) for all i with

cov(ξi , ξj) = 0 for all i ̸= j

implying their independence.
——————————————————————————————
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Constructing Gaussian vector RVs

Below is some Mathematica code and output used to obtain and verify
Cholesky decomposition.

QQ = {{1, 2}, {2, 5}};

HH = CholeskyDecomposition[QQ];

HH // MatrixForm


1 2
0 1



Transpose[HH].HH // MatrixForm


1 2
2 5



——————————————————————————————
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Constructing Gaussian vector RVs

Exercise.
Let ξ ∼ N(m, Q) where

m =
(

m1
m2

)
, Q =

(
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

)
, −1 ≤ ρ ≤ 1.

Find E [e iu·ξ] and show that ρ = 0 implies ξ1 and ξ2 are independent.

Solution. By Definition 2

E [e iu·ξ] = e im·u− 1
2 u·Qu

= e i(m1u1+m2u2)− 1
2 (σ2

1u2
1+2ρσ1σ2u1u2+σ2

2u2
2)

= e i(m1u1+m2u2)− 1
2 (σ2

1u2
1+σ2

2u2
2) (taking ρ = 0)

= e im1u1− 1
2 σ2

1u2
1 e im2u2− 1

2 σ2
2u2

2 = E [e iu1ξ1 ]E [e iu2ξ2 ]

showing ξ1 and ξ2 are independent.
——————————————————————————————
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Affine-linear transform of Gaussian vector RVs

The next theorem is a major result that show a linear affine
transformation applied to a joint Gaussian (normal) random vector
produces another joint Gaussian random vector.

Theorem 2 (affine-linear transform of Gaussian RVs)
Let X = (X1, . . . , Xk)T ∼ N(m, Q) and let Y = (Y1, . . . , Yn)T be an
affine-linear transformation of X , i.e.

Y = b + AX

where b ∈ Rn and A ∈ Rn×k are deterministic.

Then Y ∼ N(Am + b, AQAT ).
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Affine-linear transform of Gaussian vector RVs

Proof.
Method 1. The CF of Y is given by

E [e iu·Y ] = E [e iu·(b+AX)] = e ib·uE [e iu·AX ] (non-random terms)

= e ib·uE [e i(AT u)·X ]

= e ib·ue im·(AT u)− 1
2 (AT u)·QAT u (replace u with AT u in Def. 2)

= e ib·ue i(Am)·u− 1
2 u·AQAT u = e i(b+Am)·u− 1

2 u·AQAT u

which by Definition 2 gives Y ∼ N(b + Am, AQAT ).

17 / 38



Affine-linear transform of Gaussian vector RVs

Method 2. Note that for suitable deterministic L ∈ Rk×k we can re-write
Y as

Y = b + AX = b + A(m + Lξ) = b + Am + ALξ

where ξ = (ξ1, . . . , ξk)T ∼ N(0, I), which by Definition 1 shows that Y is
Gaussian (replace m with b + Am and L with AL to see).

The expectation of Y is

E [Y ] = E [b + Am + ALξ]
= b + Am + ALE [ξ] (non-random terms)
= b + Am.

18 / 38



Affine-linear transform of Gaussian vector RVs

The autocovariance of Y is

cov(Y , Y ) = E
[
(Y − E [Y ])(Y − E [Y ])T ]

= E
[
ALξ(ALξ)T ] = E

[
ALξξT LT AT ]

= ALE
[
ξξT ]LT AT (non-random terms)

= ALE
[
(ξ − E [ξ])(ξ − E [ξ])T ]LT AT (E [ξ] = 0)

= AL cov(ξ, ξ)LT AT = ALInLT AT = ALLT AT

= AQAT (see proof (Part 1) of Theorem1)

which gives Y ∼ N(b + Am, AQAT ).
——————————————————————————————
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Theorem on normal correlation (TNC) – vector RVs

Theorem 3 (theorem on normal correlation – vector version)
Let random vectors θ = (θ1, ..., θm)T and ξ = (ξ1, .., ξn)T have a joint
Gaussian distribution. Then the following properties hold.

1. If cov(θ, ξ) = 0 then θ and ξ are independent.

2. If u · cov(ξ, ξ)u > 0 for any u ̸= 0 then the RV

η := θ − E [θ] − cov(θ, ξ) cov(ξ, ξ)−1(ξ − E [ξ])

and ξ are independent.

3. If u · cov(ξ, ξ)u > 0 for any u ̸= 0 then

E [θ|ξ] = E [θ] + cov(θ, ξ) cov(ξ, ξ)−1(ξ − E [ξ]).
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Theorem on normal correlation (TNC) – vector RVs

Theorem 3 (cont.)
4. If u · cov(ξ, ξ)u > 0 for any u ̸= 0, then the conditional
autocovariance

cov(θ, θ|ξ) = E
[
(θ − E [θ|ξ])(θ − E [θ|ξ])T |ξ

]
= E

[
(θ − E [θ|ξ])(θ − E [θ|ξ])T ]

= cov(θ, θ) − cov(θ, ξ) cov(ξ, ξ)−1 cov(θ, ξ)T .

Note to Part 1.
We know that for any RVs, independence implies zero covariance.

TNC Part 1 works the other way, stating that for joint Gaussian RVs,
zero covariance implies independence.

This is convenient, as verifying zero covariance is easier than verifying
independence directly.
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Theorem on normal correlation (TNC) – vector RVs

Note to Part 2 and 3.
If we combine these results we have

η := θ − E [θ|ξ] and ξ

are independent.

In the supporting notes to this chapter, we show that ordinary least
squares regression is a particular application of Part 3.

In this context we can interpret this result as saying that the noise terms
η and the predictors (covariates) ξ are independent.

However, in this subject the main use we have for this result is in the
proof of Part 4, with the second line as stated following immediately.
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Theorem on normal correlation (TNC) – vector RVs

Note to Part 3 and 4.
Although we don’t prove this, the conditional distribution

θ|{ξ = x} ∼ N(µ(x), σ2(x))

where
µ(x) := E [θ|ξ = x]

and
σ2(x) := cov(θ, θ|ξ = x).

are given by Parts 3 and 4 respectively.
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Theorem on normal correlation (TNC) – vector RVs

Proof.
Part 1. If we can show the joint CF of θ, ξ is the product of the marginal
CFs, i.e.

E [e i(z·θ+u·ξ)] = E [e iz·θ]E [e iu·ξ],

then by the one-to-one relationship between CFs and distributions we will
have shown that θ and ξ are independent.

Proceeding, first note that because θ, ξ are joint Gaussian then for
z ∈ Rm and u ∈ Rn

z · θ + u · ξ,

are also are joint Gaussian by Theorem 2.

So by Definition 2

E [e i(z·θ+u·ξ)] = e iE [z·θ+u·ξ]− 1
2 var(z·θ+u·ξ).
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Theorem on normal correlation (TNC) – vector RVs

Next note that

var(z · θ + u · ξ) = var(z · θ) + var(u · ξ) + 2 cov(z · θ, u · ξ)

where

cov(z · θ, u · ξ) = z · cov(θ, ξ)u (check this yourselves)
= z · 0u = 0.

Therefore

E [e i(z·θ+u·ξ)] = e iE [z·θ+u·ξ]− 1
2 var(z·θ+u·ξ)

= e iE [z·θ+u·ξ]− 1
2 (var(z·θ)+var(u·ξ))

= e iE [z·θ]− 1
2 var(z·θ)e iE [u·ξ]− 1

2 var(u·ξ)

= E [e iz·θ]E [e iu·ξ]

and we have the desired result.
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Theorem on normal correlation (TNC) – vector RVs

Part 2. Observe that

cov(η, ξ) = E
[
(η − E [η])(ξ − E [ξ])T ] = E

[
η(ξ − E [ξ])T ]

= E
[(

θ − E [θ] − cov(θ, ξ) cov(ξ, ξ)−1(ξ − E [ξ])
)
(ξ − E [ξ])T ]

= E
[
(θ − E [θ])(ξ − E [ξ])T ]

− cov(θ, ξ) cov(ξ, ξ)−1E
[
(ξ − E [ξ])(ξ − E [ξ])T ]

(linearity and non-random terms)
= cov(θ, ξ) − cov(θ, ξ) cov(ξ, ξ)−1 cov(ξ, ξ)
= cov(θ, ξ) − cov(θ, ξ) = 0

which by Part 1 TNC shows that η and ξ are independent (zero
covariance implies independence for joint Gaussian RVs).
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Theorem on normal correlation (TNC) – vector RVs

Part 3. The conditional expectation

E [η|ξ] = E
[
θ − E [θ] − cov(θ, ξ) cov(ξ, ξ)−1(ξ − E [ξ])|ξ

]
= E [θ|ξ] − E [θ] − cov(θ, ξ) cov(ξ, ξ)−1(E [ξ|ξ

]
− E [ξ])

(linearity and non-random terms)
= E [θ|ξ] − E [θ] − cov(θ, ξ) cov(ξ, ξ)−1(ξ − E [ξ])

(see properties of conditional expectation Chapter 1).

But from Part 2 of this proof we know that η and ξ are independent so

E [η|ξ] = E [η] = 0

giving
E [θ|ξ] = E [θ] + cov(θ, ξ) cov(ξ, ξ)−1(ξ − E [ξ]).
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Theorem on normal correlation (TNC) – vector RVs

Part 4. First note that

θ − E [θ|ξ] = θ − E [θ] − cov(θ, ξ) cov(ξ, ξ)−1(ξ − E [ξ])
= η

and ξ are independent by Part 2 of this theorem which gives

E
[
(θ − E [θ|ξ])(θ − E [θ|ξ])T |ξ

]
= E

[
(θ − E [θ|ξ])(θ − E [θ|ξ])T ]

by properties of conditional expectation Chapter 1.
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Theorem on normal correlation (TNC) – vector RVs

Then
E
[
(θ − E [θ|ξ])(θ − E [θ|ξ])T ]

= E
[
(θ − E [θ] − cov(θ, ξ) cov(ξ, ξ)−1(ξ − E [ξ]))
(θ − E [θ] − cov(θ, ξ) cov(ξ, ξ)−1(ξ − E [ξ]))T ]

= E
[
(θ − E [θ])(θ − E [θ])T ]

− E
[
(θ − E [θ])(cov(θ, ξ) cov(ξ, ξ)−1(ξ − E [ξ]))T ]

− E
[

cov(θ, ξ) cov(ξ, ξ)−1(ξ − E [ξ])(θ − E [θ])T ]
+ E

[
cov(θ, ξ) cov(ξ, ξ)−1(ξ − E [ξ])
(cov(θ, ξ) cov(ξ, ξ)−1(ξ − E [ξ]))T ]

= cov(θ, θ)
− E

[
(θ − E [θ])(ξ − E [ξ])T ] cov(ξ, ξ)−1 cov(θ, ξ)T

− E
[
(θ − E [θ])(ξ − E [ξ])T ] cov(ξ, ξ)−1 cov(θ, ξ)T

+ cov(θ, ξ) cov(ξ, ξ)−1E
[
(ξ − E [ξ])(ξ − E [ξ])T ]

cov(ξ, ξ)−1 cov(θ, ξ)T
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Theorem on normal correlation (TNC) – vector RVs

= cov(θ, θ)
− cov(θ, ξ) cov(ξ, ξ)−1 cov(θ, ξ)T

− cov(θ, ξ) cov(ξ, ξ)−1 cov(θ, ξ)T

+ cov(θ, ξ) cov(ξ, ξ)−1 cov(ξ, ξ) cov(ξ, ξ)−1 cov(θ, ξ)T

= cov(θ, θ)
− cov(θ, ξ) cov(ξ, ξ)−1 cov(θ, ξ)T

− cov(θ, ξ) cov(ξ, ξ)−1 cov(θ, ξ)T

+ cov(θ, ξ) cov(ξ, ξ)−1 cov(θ, ξ)T

= cov(θ, θ) − cov(θ, ξ) cov(ξ, ξ)−1 cov(θ, ξ)T

using linearity of expectation, removing non-random terms from
expectation, definition of covariance and standard properties from linear
algebra.
——————————————————————————————
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Theorem on normal correlation (TNC) – scalar RVs

Theorem 4 (theorem on normal correlation – scalar version)
Let (θ, ξ)T have a joint Gaussian distribution. Then the following
properties hold.

1. If cov(θ, ξ) = 0 then θ and ξ are independent.

2. If var(ξ) > 0 then the RV

η := θ − E [θ] − cov(θ, ξ)
var(ξ) (ξ − E [ξ])

and ξ are independent.

3. If var(ξ) > 0 then

E [θ|ξ] = E [θ] + cov(θ, ξ)
var(ξ) (ξ − E [ξ]).
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Theorem on normal correlation (TNC) – scalar RVs

Theorem 4 (cont.)
4. If var(ξ) > 0 then the autocovariance

cov(θ, θ|ξ) = E
[
(θ − E [θ|ξ])2|ξ

]
= E

[
(θ − E [θ|ξ])2]

= var(θ) − cov(θ, ξ)2

var(ξ) .
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Theorem on normal correlation (TNC) – scalar RVs

Example.
Let (

θ
ξ

)
= N ∼

((
1

−1

)
,

(
5 2
2 1

))
,

i.e. θ ∼ N(1, 5), ξ ∼ N(−1, 1), cov(θ, ξ) = 2 and (θ, ξ) are joint
Gaussian.

Then

E [θ|ξ] = E [θ] + cov(θ, ξ)
var(ξ) (ξ − E [ξ])

= 1 + 2
1(ξ + 1) = 2ξ + 3

and

E [(θ − E (θ|ξ))2] = var(θ) − cov(θ, ξ)2

var(ξ)

= 5 − 22

1 = 5 − 4 = 1.

—————————————————————————————— 33 / 38



Theorem on normal correlation (TNC) – scalar RVs

The TNC relies on the assumption that the random vectors
θ = (θ1, . . . , θm)T and ξ = (ξ1, . . . , ξn)T follow a joint Gaussian
distribution.

The next example demonstrates that this is essential.

Example.
Consider two independent RVs ξ ∼ N(0, 1) and ζ ∼ N(0, 1) so

E [euξ] = E [euζ ] = e 1
2 u2

.

Consider now the pair of RVs θ and ξ where

θ = |ξ|sgn(ζ) =
{

|ξ| if ζ ≥ 0,

−|ξ| if ζ < 0.

We shall show that
θ ∼ N(0, 1) and cov(θ, ξ) = 0

despite θ, ξ being dependent (we show this at the end).
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Theorem on normal correlation (TNC) – scalar RVs

The MGF of θ for all u ∈ R is

E [euθ] = E [eu|ξ|sgn(ζ)]
= E

[
E [eu|ξ|sgn(ζ)|ξ]

]
(law of iterated conditioning)

= E
[1

2eu|ξ| + 1
2e−u|ξ|

]
= E [cosh(u|ξ|)] = E [cosh(uξ)]

= 1
2E [euξ + e−uξ] = e 1

2 u2

showing θ ∼ N(0, 1).

But the covariance

cov(θ, ξ) = E [θξ] − E [θ]E [ξ] = E [|ξ|sgn(ζ)ξ] − 0
= E [|ξ|ξ]E [sgn(ζ)] (ξ, ζ are independent)
= E [|ξ|ξ]sgn(E [ζ]) = 0.
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Theorem on normal correlation (TNC) – scalar RVs

Finally note that
|ξ| = |θ|

and therefore

cov(|θ|, |ξ|) = var(|ξ|) = E [ξ2] − (E [|ξ|])2 = 1 − 2
π

> 0

and we see there is some dependence between θ and ξ.

But Part 1 of Proposition 4 (TNC) says that θ and ξ are independent if
cov(θ, ξ) = 0.

So while θ and ξ may be scalar normal RVs, they cannot be joint-normal.
——————————————————————————————
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