Stochastic Processes and Financial Mathematics (37363)

Chapter 2

Multivariate Gaussian random variables

Alex Novikov and Scott Alexander

School of Mathematical and Physical Sciences, UTS

Autumn 2025

Topics:

- Constructing Gaussian vector RVs
- Affine-linear transform of Gaussian vector RVs
- Theorem on normal correlation (TNC)
 - vector RVs
 - scalar RVs

We begin by providing two (equivalent) definitions of joint Gaussian random vectors.

The first definition is based on scalar Gaussian RVs introduced in Chapter 1.

Definition 1 (Gaussian random vector 1)

We say that the random vector $\mathbf{X} = (X_1, \dots, X_n)^T$ has a joint Gaussian (normal) distribution if it has the representation

$$X = m + L\xi$$

where $\boldsymbol{m} \in \mathbb{R}^n$ is a non-random vector, $\boldsymbol{L} \in \mathbb{R}^{n \times k}$ is a non-random matrix, $\boldsymbol{\xi} = (\xi_1, \dots, \xi_k)^T$, $\xi_i \sim N(0, 1)$ and ξ_1, \dots, ξ_k are independent.

Terminology. The vector $\mathbf{X} = \mathbf{m} + L\boldsymbol{\xi}$ is called an affine-linear transformation of the RV $\boldsymbol{\xi}$.

Notation.

The joint Gaussian vector RV \boldsymbol{X} has expectation

$$E[\mathbf{X}] = E[\mathbf{m} + \mathbf{L}\mathbf{\xi}] = \mathbf{m} + \mathbf{L}E[\mathbf{\xi}] = \mathbf{m}$$

and autocovariance

$$Q := \operatorname{cov}(\boldsymbol{X}, \boldsymbol{X}) = E[(\boldsymbol{X} - \boldsymbol{m})(\boldsymbol{X} - \boldsymbol{m})^{\mathsf{T}}] = E[\boldsymbol{L}\boldsymbol{\xi}(\boldsymbol{L}\boldsymbol{\xi})^{\mathsf{T}}]$$
$$= LE[\boldsymbol{\xi}\boldsymbol{\xi}^{\mathsf{T}}]\boldsymbol{L}^{\mathsf{T}} = L\boldsymbol{I}_{k}\boldsymbol{L}^{\mathsf{T}} = \boldsymbol{L}\boldsymbol{L}^{\mathsf{T}}$$

and we write $\pmb{X} \sim N(\pmb{m}, \pmb{Q}).$

Caution.

In most applications of this definition we will have $k \ge n$.

However, there may be cases where k < n.

In this case the $n \times n$ autocovariance matrix \boldsymbol{Q} will have rank k and will not be invertible.

The second definition is based on characteristic and moment generating functions also introduced in Chapter 1.

Definition 2 (Gaussian random vector 2)

We say that the random vector $\mathbf{X} = (X_1, \dots, X_n)^T$ has a joint Gaussian (normal) distribution if for all $\mathbf{u} \in \mathbb{R}^n$ the CF of \mathbf{X} has the form

$$\varphi_{\boldsymbol{X}}(\boldsymbol{u}) := E[e^{i\boldsymbol{u}\cdot\boldsymbol{X}}] = e^{i\boldsymbol{m}\cdot\boldsymbol{u}-\frac{1}{2}\boldsymbol{u}\cdot\boldsymbol{Q}\boldsymbol{u}}$$

or equivalently if the MGF of \boldsymbol{X} has the form

$$M_{\boldsymbol{X}}(\boldsymbol{u}) := E[e^{\boldsymbol{u}\cdot\boldsymbol{X}}] = e^{\boldsymbol{m}\cdot\boldsymbol{u}+\frac{1}{2}\boldsymbol{u}\cdot\boldsymbol{Q}\boldsymbol{u}}$$

where $\boldsymbol{m} = E[\boldsymbol{X}] \in \mathbb{R}^n$ and $\boldsymbol{Q} = \operatorname{cov}(\boldsymbol{X}, \boldsymbol{X}) \in \mathbb{R}^{n \times n}$ and $\boldsymbol{z} \cdot \boldsymbol{Q} \boldsymbol{z} \ge 0$ for all $\boldsymbol{z} \in \mathbb{R}^n$.

Notation. $\boldsymbol{X} \sim N(\boldsymbol{m}, \boldsymbol{Q})$.

The following example illustrates how both definitions can be used to show that a vector of independent, standard normal RVs is joint Gaussian.

Example.

Let $\boldsymbol{\xi} = (\xi_1, \dots, \xi_n)^T$, $\xi_i \sim N(0, 1)$ and ξ_1, \dots, ξ_n are independent. We have

$$E[\xi_i]=0$$
 for all $i,$
var $(\xi_i)= ext{cov}(\xi_i,\xi_i)=1$ for all i

and by independence

$$\mathsf{cov}(\xi_i,\xi_j)=0$$
 for all $i
eq j$

so

$$m = 0$$
 and $Q = I_n$

where **0** is the zero vector in \mathbb{R}^n and I_n is the identity matrix in $\mathbb{R}^{n \times n}$.

So by Definition 1, $\boldsymbol{\xi} \sim N(\boldsymbol{0}, \boldsymbol{I}_n)$. To see this take $\boldsymbol{m} = \boldsymbol{0}$ and $\boldsymbol{L} = \boldsymbol{I}_n$ in this definition.

We can also obtain this directly via

$$\varphi_{\boldsymbol{\xi}}(\boldsymbol{u}) = E[e^{i\boldsymbol{u}\cdot\boldsymbol{\xi}}] = E\left[e^{\sum_{k=1}^{n}iu_{k}\xi_{k}}\right] = E\left[\prod_{k=1}^{n}e^{iu_{k}\xi_{k}}\right]$$
$$= \prod_{k=1}^{n}E[e^{iu_{k}\xi_{k}}] \quad (by \text{ independence})$$
$$= \prod_{k=1}^{n}e^{-\frac{1}{2}u_{k}^{2}} \quad (CF \text{ of } N(0,1) \text{ RV} - \text{ proof as exercise})$$
$$= e^{-\frac{1}{2}\sum_{k=1}^{n}u_{k}^{2}} = e^{-\frac{1}{2}\boldsymbol{u}\cdot\boldsymbol{u}} = e^{-\frac{1}{2}|\boldsymbol{u}|^{2}}. \tag{1}$$

So by Definition 2, $\boldsymbol{\xi} \sim N(\boldsymbol{0}, \boldsymbol{I}_n)$. To see this take $\boldsymbol{m} = \boldsymbol{0}$ and $\boldsymbol{Q} = \boldsymbol{I}_n$ in this definition.

Below is Mathematica code and plots of two 2D Gaussian RV PDFs.

 $\rho = 0.9;$

 $\begin{array}{l} \texttt{g1 = Plot3D[PDF[MultinormalDistribution[{0,0}, {{1, \rho}, {\rho, 1}}], {x, y}], {x, -4, 4}, \\ \texttt{{y, -4, 4}, PlotRange \rightarrow All, AxesLabel \rightarrow {x, y}, PlotLabel \rightarrow "cov(X,Y) = 0.9"]; } \end{array}$

 $\rho = -0.5;$

 $g2 = Plot3D[PDF[MultinormalDistribution[{0, 0}, {{1, p}, {p, 1}}], {x, y}], {x, -4, 4},$

{y, -4, 4}, PlotRange \rightarrow All, AxesLabel \rightarrow {x, y}, PlotLabel \rightarrow "cov(X,Y) = -0.5"]; GraphicsGrid[{{g1, g2}}]

Comments. Note that according to these definitions any deterministic vector \mathbf{x} has a Gaussian distribution $\mathbf{x} \sim N(\mathbf{x}, \mathbf{0})$.

More generally, if Q > 0 (that is $z \cdot Qz > 0$ for any $z \neq 0$) then det(Q) > 0.

This in turn means the inverse matrix ${m Q}^{-1}$ exists allowing the PDF for ${m X}\sim {m N}({m m},{m Q})$ to be defined as

$$f_{\boldsymbol{X}}(\boldsymbol{x}) = \frac{1}{(2\pi)^{n/2}\sqrt{\det(\boldsymbol{Q})}} e^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{m})\cdot\boldsymbol{Q}^{-1}(\boldsymbol{x}-\boldsymbol{m})}.$$

Definition 1 is a kind of direct probabilistic approach based on use of a fundamental RV ($\xi_i \sim N(0, 1)$ and independent). It is used in simulations.

Definition 2 is a kind of analytical approach based on analytical tools (the CF and MGF).

The following theorem shows the equivalence of the two previous definitions.

Theorem 1 (constructing multivariate Gaussian RVs)

Definitions 1 and 2 are equivalent with m = E[X] and Q = cov(X, X).

Proof.

Part 1. Showing Definition 1 implies Definition 2.

We have $\boldsymbol{\xi} = (\xi_1, ..., \xi_n)^T \sim N(\boldsymbol{0}, \boldsymbol{I}_n)$ so $E[e^{i\boldsymbol{u}\cdot\boldsymbol{X}}] = E[e^{i\boldsymbol{u}\cdot(\boldsymbol{m}+\boldsymbol{L}\boldsymbol{\xi})}] = e^{i\boldsymbol{m}\cdot\boldsymbol{u}}E[e^{i\boldsymbol{u}\cdot\boldsymbol{L}\boldsymbol{\xi}}] \quad (\text{non-random terms})$ $= e^{i\boldsymbol{m}\cdot\boldsymbol{u}}E[e^{i\boldsymbol{L}^T\boldsymbol{u}\cdot\boldsymbol{\xi}}] = e^{i\boldsymbol{m}\cdot\boldsymbol{u}}e^{-\frac{1}{2}(\boldsymbol{L}^T\boldsymbol{u})\cdot\boldsymbol{L}^T\boldsymbol{u}}$ $(\text{replace } \boldsymbol{u} \text{ with } \boldsymbol{L}^T\boldsymbol{u} \text{ in equation (1) to see})$ $= e^{i\boldsymbol{m}\cdot\boldsymbol{u}}e^{-\frac{1}{2}(\boldsymbol{L}^T\boldsymbol{u})^T\boldsymbol{L}^T\boldsymbol{u}} = e^{i\boldsymbol{m}\cdot\boldsymbol{u}-\frac{1}{2}\boldsymbol{u}^T\boldsymbol{L}\boldsymbol{L}^T\boldsymbol{u}} = e^{i\boldsymbol{m}\cdot\boldsymbol{u}-\frac{1}{2}\boldsymbol{u}\cdot(\boldsymbol{L}\boldsymbol{L}^T)\boldsymbol{u}}$

and we can conclude that Definition 2 holds with $\boldsymbol{Q} = \boldsymbol{L} \boldsymbol{L}^{T}$.

Part 2. Showing Definition 2 implies Definition 1.

We have $X \sim N(m, Q)$ and assume that $z \cdot Qz > 0$ for all $z \neq 0$ (shorthand Q > 0) so that det(Q) > 0.

We need to find **L** such that $\mathbf{X} = \mathbf{m} + \mathbf{L}\boldsymbol{\xi}$ where $\boldsymbol{\xi} \sim N(\mathbf{0}, \mathbf{I}_n)$.

There are many ways to find such an \boldsymbol{L} , such as the Cholesky decomposition

$$\boldsymbol{Q} = \boldsymbol{H}^T \boldsymbol{H},$$

which exists because Q > 0. Here H is an upper triangular matrix and H^{T} is a lower triangular matrix.

Also because ${oldsymbol Q}>0$ the inverse ${oldsymbol Q}^{-1}$ exists and

$$det(\boldsymbol{Q}) = det(\boldsymbol{H}^{T}\boldsymbol{H}) = det(\boldsymbol{H}^{T}) det(\boldsymbol{H}) = (det(\boldsymbol{H}))^{2}$$

(det. of triangular matrix is product of diag. components)
> 0

so det(\boldsymbol{H}^{T}) \neq 0 showing (\boldsymbol{H}^{T})⁻¹ also exists.

Taking $\boldsymbol{L} = \boldsymbol{H}^T$ we have

$$\boldsymbol{X} = \boldsymbol{m} + \boldsymbol{H}^T \boldsymbol{\xi}$$

or

$$\boldsymbol{\xi} = (\boldsymbol{H}^{\mathsf{T}})^{-1}(\boldsymbol{X} - \boldsymbol{m}) = (\boldsymbol{H}^{-1})^{\mathsf{T}}(\boldsymbol{X} - \boldsymbol{m})$$

by the transpose and inverse properties of real matrices.

Therefore

$$E[e^{iu \cdot \xi}] = E[e^{iu \cdot (H^{-1})^T (X-m)}] = E[e^{i(H^{-1}u) \cdot (X-m)}]$$

= $e^{-i(H^{-1}u) \cdot m} E[e^{i(H^{-1}u) \cdot X}]$ (non-random terms)
= $e^{-i(H^{-1}u) \cdot m} e^{im \cdot H^{-1}u - \frac{1}{2}(H^{-1}u) \cdot QH^{-1}u}$ (by Definition 2)
= $e^{-\frac{1}{2}u^T (H^{-1})^T QH^{-1}u} = e^{-\frac{1}{2}u^T (H^T)^{-1} QH^{-1}u} = e^{-\frac{1}{2}u^T I_n u}$
= $e^{-\frac{1}{2}u \cdot u}$

as

$$\boldsymbol{Q} = \boldsymbol{H}^{\mathsf{T}}\boldsymbol{H} \Rightarrow (\boldsymbol{H}^{\mathsf{T}})^{-1}\boldsymbol{Q}\boldsymbol{H}^{-1} = (\boldsymbol{H}^{\mathsf{T}})^{-1}\boldsymbol{H}^{\mathsf{T}}\boldsymbol{H}\boldsymbol{H}^{-1} = \boldsymbol{I}_{n}.$$

So we see $\boldsymbol{\xi} \sim N(\boldsymbol{0}, \boldsymbol{I}_n)$, or $\xi_i \sim N(0, 1)$ for all *i* with

$$cov(\xi_i,\xi_j) = 0$$
 for all $i \neq j$

implying their independence.

Below is some Mathematica code and output used to obtain and verify Cholesky decomposition.

QQ = {{1, 2}, {2, 5}}; HH = CholeskyDecomposition[QQ]; HH // MatrixForm

```
\left(\begin{array}{cc} \mathbf{1} & \mathbf{2} \\ \mathbf{0} & \mathbf{1} \end{array}\right)
```

Transpose[HH].HH // MatrixForm

 $\left(\begin{array}{cc} 1 & 2 \\ 2 & 5 \end{array}\right)$

Exercise.

Let $\boldsymbol{\xi} \sim \textit{N}(\boldsymbol{m}, \boldsymbol{Q})$ where

$$\boldsymbol{m} = \begin{pmatrix} m_1 \\ m_2 \end{pmatrix}, \quad \boldsymbol{Q} = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}, \quad -1 \le \rho \le 1.$$

Find $E[e^{i\boldsymbol{u}\cdot\boldsymbol{\xi}}]$ and show that $\rho = 0$ implies ξ_1 and ξ_2 are independent.

Solution. By Definition 2

$$\begin{split} E[e^{i\boldsymbol{u}\cdot\boldsymbol{\xi}}] &= e^{i\boldsymbol{m}\cdot\boldsymbol{u} - \frac{1}{2}\boldsymbol{u}\cdot\boldsymbol{Q}\boldsymbol{u}} \\ &= e^{i(m_1u_1 + m_2u_2) - \frac{1}{2}(\sigma_1^2u_1^2 + 2\rho\sigma_1\sigma_2u_1u_2 + \sigma_2^2u_2^2)} \\ &= e^{i(m_1u_1 + m_2u_2) - \frac{1}{2}(\sigma_1^2u_1^2 + \sigma_2^2u_2^2)} \quad (\text{taking } \rho = 0) \\ &= e^{im_1u_1 - \frac{1}{2}\sigma_1^2u_1^2}e^{im_2u_2 - \frac{1}{2}\sigma_2^2u_2^2} = E[e^{iu_1\xi_1}]E[e^{iu_2\xi_2}] \end{split}$$

showing ξ_1 and ξ_2 are independent.

The next theorem is a major result that show a linear affine transformation applied to a joint Gaussian (normal) random vector produces another joint Gaussian random vector.

Theorem 2 (affine-linear transform of Gaussian RVs)

Let $\mathbf{X} = (X_1, \dots, X_k)^T \sim N(\mathbf{m}, \mathbf{Q})$ and let $\mathbf{Y} = (Y_1, \dots, Y_n)^T$ be an affine-linear transformation of \mathbf{X} , i.e.

 $m{Y} = m{b} + m{A}m{X}$

where $\boldsymbol{b} \in \mathbb{R}^n$ and $\boldsymbol{A} \in \mathbb{R}^{n \times k}$ are deterministic.

Then $\mathbf{Y} \sim N(\mathbf{A}\mathbf{m} + \mathbf{b}, \mathbf{A}\mathbf{Q}\mathbf{A}^T)$.

Proof. Method 1. The CF of **Y** is given by $E[e^{i\boldsymbol{u}\cdot\mathbf{Y}}] = E[e^{i\boldsymbol{u}\cdot(\boldsymbol{b}+\boldsymbol{A}\mathbf{X})}] = e^{i\boldsymbol{b}\cdot\boldsymbol{u}}E[e^{i\boldsymbol{u}\cdot\boldsymbol{A}\mathbf{X}}] \quad (\text{non-random terms})$ $= e^{i\boldsymbol{b}\cdot\boldsymbol{u}}E[e^{i(\boldsymbol{A}^{T}\boldsymbol{u})\cdot\mathbf{X}}]$ $= e^{i\boldsymbol{b}\cdot\boldsymbol{u}}e^{i\boldsymbol{m}\cdot(\boldsymbol{A}^{T}\boldsymbol{u})-\frac{1}{2}(\boldsymbol{A}^{T}\boldsymbol{u})\cdot\boldsymbol{Q}\boldsymbol{A}^{T}\boldsymbol{u}} \quad (\text{replace } \boldsymbol{u} \text{ with } \boldsymbol{A}^{T}\boldsymbol{u} \text{ in Def. 2})$ $= e^{i\boldsymbol{b}\cdot\boldsymbol{u}}e^{i(\boldsymbol{A}\boldsymbol{m})\cdot\boldsymbol{u}-\frac{1}{2}\boldsymbol{u}\cdot\boldsymbol{A}\boldsymbol{Q}\boldsymbol{A}^{T}\boldsymbol{u}} = e^{i(\boldsymbol{b}+\boldsymbol{A}\boldsymbol{m})\cdot\boldsymbol{u}-\frac{1}{2}\boldsymbol{u}\cdot\boldsymbol{A}\boldsymbol{Q}\boldsymbol{A}^{T}\boldsymbol{u}}$

which by Definition 2 gives $\mathbf{Y} \sim N(\mathbf{b} + \mathbf{A}\mathbf{m}, \mathbf{A}\mathbf{Q}\mathbf{A}^{T})$.

Method 2. Note that for suitable deterministic $\boldsymbol{L} \in \mathbb{R}^{k \times k}$ we can re-write \boldsymbol{Y} as

$$Y = b + AX = b + A(m + L\xi) = b + Am + AL\xi$$

where $\boldsymbol{\xi} = (\xi_1, \dots, \xi_k)^T \sim N(0, \boldsymbol{I})$, which by Definition 1 shows that \boldsymbol{Y} is Gaussian (replace \boldsymbol{m} with $\boldsymbol{b} + \boldsymbol{A}\boldsymbol{m}$ and \boldsymbol{L} with $\boldsymbol{A}\boldsymbol{L}$ to see).

The expectation of \boldsymbol{Y} is

$$E[\mathbf{Y}] = E[\mathbf{b} + \mathbf{Am} + \mathbf{AL\xi}]$$

= $\mathbf{b} + \mathbf{Am} + \mathbf{ALE}[\boldsymbol{\xi}]$ (non-random terms)
= $\mathbf{b} + \mathbf{Am}$.

The autocovariance of \boldsymbol{Y} is

$$cov(\mathbf{Y}, \mathbf{Y}) = E[(\mathbf{Y} - E[\mathbf{Y}])(\mathbf{Y} - E[\mathbf{Y}])^{T}]$$

= $E[\mathbf{A}L\xi(\mathbf{A}L\xi)^{T}] = E[\mathbf{A}L\xi\xi^{T}L^{T}\mathbf{A}^{T}]$
= $\mathbf{A}LE[\xi\xi^{T}]L^{T}\mathbf{A}^{T}$ (non-random terms)
= $\mathbf{A}LE[(\xi - E[\xi])(\xi - E[\xi])^{T}]L^{T}\mathbf{A}^{T}$ ($E[\xi] = \mathbf{0}$)
= $\mathbf{A}L cov(\xi, \xi)L^{T}\mathbf{A}^{T} = \mathbf{A}LI_{n}L^{T}\mathbf{A}^{T} = \mathbf{A}LL^{T}\mathbf{A}^{T}$
= $\mathbf{A}Q\mathbf{A}^{T}$ (see proof (Part 1) of Theorem1)

which gives $\mathbf{Y} \sim N(\mathbf{b} + \mathbf{A}\mathbf{m}, \mathbf{A}\mathbf{Q}\mathbf{A}^{T})$.

Theorem 3 (theorem on normal correlation – vector version)

Let random vectors $\boldsymbol{\theta} = (\theta_1, ..., \theta_m)^T$ and $\boldsymbol{\xi} = (\xi_1, ..., \xi_n)^T$ have a joint Gaussian distribution. Then the following properties hold.

- 1. If $cov(\theta, \xi) = \mathbf{0}$ then θ and ξ are independent.
- 2. If $\boldsymbol{u} \cdot \operatorname{cov}(\boldsymbol{\xi}, \boldsymbol{\xi}) \boldsymbol{u} > 0$ for any $\boldsymbol{u} \neq \boldsymbol{0}$ then the RV

$$\eta := \theta - E[\theta] - \operatorname{cov}(\theta, \xi) \operatorname{cov}(\xi, \xi)^{-1}(\xi - E[\xi])$$

and $\boldsymbol{\xi}$ are independent.

3. If $\boldsymbol{u} \cdot \operatorname{cov}(\boldsymbol{\xi}, \boldsymbol{\xi})\boldsymbol{u} > 0$ for any $\boldsymbol{u} \neq \boldsymbol{0}$ then $E[\boldsymbol{\theta}|\boldsymbol{\xi}] = E[\boldsymbol{\theta}] + \operatorname{cov}(\boldsymbol{\theta}, \boldsymbol{\xi}) \operatorname{cov}(\boldsymbol{\xi}, \boldsymbol{\xi})^{-1}(\boldsymbol{\xi} - E[\boldsymbol{\xi}]).$

Theorem 3 (cont.)

4. If $\boldsymbol{u}\cdot ext{cov}(\boldsymbol{\xi},\boldsymbol{\xi})\boldsymbol{u}>0$ for any $\boldsymbol{u}\neq \boldsymbol{0},$ then the conditional autocovariance

$$cov(\theta, \theta | \boldsymbol{\xi}) = E [(\theta - E[\theta | \boldsymbol{\xi}])(\theta - E[\theta | \boldsymbol{\xi}])^T | \boldsymbol{\xi}]$$

= $E [(\theta - E[\theta | \boldsymbol{\xi}])(\theta - E[\theta | \boldsymbol{\xi}])^T]$
= $cov(\theta, \theta) - cov(\theta, \boldsymbol{\xi}) cov(\boldsymbol{\xi}, \boldsymbol{\xi})^{-1} cov(\theta, \boldsymbol{\xi})^T$

Note to Part 1.

We know that for any RVs, independence implies zero covariance.

TNC Part 1 works the other way, stating that for joint Gaussian RVs, zero covariance implies independence.

This is convenient, as verifying zero covariance is easier than verifying independence directly.

Note to Part 2 and 3.

If we combine these results we have

$$\eta \coloneqq heta - E[heta| \xi]$$
 and ξ

are independent.

In the supporting notes to this chapter, we show that ordinary least squares regression is a particular application of Part 3.

In this context we can interpret this result as saying that the noise terms η and the predictors (covariates) ξ are independent.

However, in this subject the main use we have for this result is in the proof of Part 4, with the second line as stated following immediately.

Note to Part 3 and 4.

Although we don't prove this, the conditional distribution

$$oldsymbol{ heta} | \{ oldsymbol{\xi} = oldsymbol{x} \} \sim N(\mu(oldsymbol{x}), \sigma^2(oldsymbol{x}))$$

where

$$\mu(\mathbf{x}) := E[\boldsymbol{\theta}|\boldsymbol{\xi} = \mathbf{x}]$$

and

$$\sigma^2(\mathbf{x}) := \operatorname{cov}(\boldsymbol{\theta}, \boldsymbol{\theta} | \boldsymbol{\xi} = \mathbf{x}).$$

are given by Parts 3 and 4 respectively.

Proof.

Part 1. If we can show the joint CF of θ, ξ is the product of the marginal CFs, i.e.

$$E[e^{i(\boldsymbol{z}\cdot\boldsymbol{\theta}+\boldsymbol{u}\cdot\boldsymbol{\xi})}]=E[e^{i\boldsymbol{z}\cdot\boldsymbol{\theta}}]E[e^{i\boldsymbol{u}\cdot\boldsymbol{\xi}}],$$

then by the one-to-one relationship between CFs and distributions we will have shown that θ and ξ are independent.

Proceeding, first note that because θ, ξ are joint Gaussian then for $z \in \mathbb{R}^m$ and $u \in \mathbb{R}^n$

 $\boldsymbol{z} \cdot \boldsymbol{\theta} + \boldsymbol{u} \cdot \boldsymbol{\xi},$

are also are joint Gaussian by Theorem 2.

So by Definition 2

$$E[e^{i(\boldsymbol{z}\cdot\boldsymbol{\theta}+\boldsymbol{u}\cdot\boldsymbol{\xi})}] = e^{iE[\boldsymbol{z}\cdot\boldsymbol{\theta}+\boldsymbol{u}\cdot\boldsymbol{\xi}] - \frac{1}{2}\operatorname{var}(\boldsymbol{z}\cdot\boldsymbol{\theta}+\boldsymbol{u}\cdot\boldsymbol{\xi})}$$

Next note that

$$ext{var}(m{z}\cdotm{ heta}+m{u}\cdotm{\xi}) = ext{var}(m{z}\cdotm{ heta}) + ext{var}(m{u}\cdotm{\xi}) + 2\operatorname{cov}(m{z}\cdotm{ heta},m{u}\cdotm{\xi})$$

where

$$\operatorname{cov}(\boldsymbol{z} \cdot \boldsymbol{\theta}, \boldsymbol{u} \cdot \boldsymbol{\xi}) = \boldsymbol{z} \cdot \operatorname{cov}(\boldsymbol{\theta}, \boldsymbol{\xi}) \boldsymbol{u}$$
 (check this yourselves)
= $\boldsymbol{z} \cdot \boldsymbol{0} \boldsymbol{u} = 0.$

Therefore

$$E[e^{i(\boldsymbol{z}\cdot\boldsymbol{\theta}+\boldsymbol{u}\cdot\boldsymbol{\xi})}] = e^{iE[\boldsymbol{z}\cdot\boldsymbol{\theta}+\boldsymbol{u}\cdot\boldsymbol{\xi}]-\frac{1}{2}\operatorname{var}(\boldsymbol{z}\cdot\boldsymbol{\theta}+\boldsymbol{u}\cdot\boldsymbol{\xi})}$$
$$= e^{iE[\boldsymbol{z}\cdot\boldsymbol{\theta}+\boldsymbol{u}\cdot\boldsymbol{\xi}]-\frac{1}{2}(\operatorname{var}(\boldsymbol{z}\cdot\boldsymbol{\theta})+\operatorname{var}(\boldsymbol{u}\cdot\boldsymbol{\xi}))}$$
$$= e^{iE[\boldsymbol{z}\cdot\boldsymbol{\theta}]-\frac{1}{2}\operatorname{var}(\boldsymbol{z}\cdot\boldsymbol{\theta})}e^{iE[\boldsymbol{u}\cdot\boldsymbol{\xi}]-\frac{1}{2}\operatorname{var}(\boldsymbol{u}\cdot\boldsymbol{\xi})}$$
$$= E[e^{i\boldsymbol{z}\cdot\boldsymbol{\theta}}]E[e^{i\boldsymbol{u}\cdot\boldsymbol{\xi}}]$$

and we have the desired result.

Part 2. Observe that

$$cov(\eta, \xi) = E[(\eta - E[\eta])(\xi - E[\xi])^T] = E[\eta(\xi - E[\xi])^T]$$

$$= E[(\theta - E[\theta] - cov(\theta, \xi) cov(\xi, \xi)^{-1}(\xi - E[\xi]))(\xi - E[\xi])^T]$$

$$= E[(\theta - E[\theta])(\xi - E[\xi])^T]$$

$$- cov(\theta, \xi) cov(\xi, \xi)^{-1} E[(\xi - E[\xi])(\xi - E[\xi])^T]$$

(linearity and non-random terms)

$$= cov(\theta, \xi) - cov(\theta, \xi) cov(\xi, \xi)^{-1} cov(\xi, \xi)$$

$$= cov(\theta, \xi) - cov(\theta, \xi) = \mathbf{0}$$

which by Part 1 TNC shows that η and ξ are independent (zero covariance implies independence for joint Gaussian RVs).

Part 3. The conditional expectation

$$\begin{split} E[\eta|\xi] &= E\left[\theta - E[\theta] - \operatorname{cov}(\theta, \xi) \operatorname{cov}(\xi, \xi)^{-1}(\xi - E[\xi])|\xi\right] \\ &= E[\theta|\xi] - E[\theta] - \operatorname{cov}(\theta, \xi) \operatorname{cov}(\xi, \xi)^{-1}(E[\xi|\xi] - E[\xi]) \\ &\quad \text{(linearity and non-random terms)} \\ &= E[\theta|\xi] - E[\theta] - \operatorname{cov}(\theta, \xi) \operatorname{cov}(\xi, \xi)^{-1}(\xi - E[\xi]) \\ &\quad \text{(see properties of conditional expectation Chapter 1).} \end{split}$$

But from Part 2 of this proof we know that η and $\pmb{\xi}$ are independent so

$$E[\eta|\boldsymbol{\xi}] = E[\eta] = \mathbf{0}$$

giving

$$E[\theta|\xi] = E[\theta] + \operatorname{cov}(\theta,\xi) \operatorname{cov}(\xi,\xi)^{-1}(\xi - E[\xi])$$

Part 4. First note that

$$egin{aligned} eta - E[heta] &= heta - E[heta] - \operatorname{cov}(heta, m{\xi}) \operatorname{cov}(m{\xi}, m{\xi})^{-1}(m{\xi} - E[m{\xi}]) \ &= \eta \end{aligned}$$

and $\pmb{\xi}$ are independent by Part 2 of this theorem which gives

$$E\big[(\theta - E[\theta|\xi])(\theta - E[\theta|\xi])^{T}|\xi\big] = E\big[(\theta - E[\theta|\xi])(\theta - E[\theta|\xi])^{T}\big]$$

by properties of conditional expectation Chapter 1.

Then

$$\begin{split} E \left[(\theta - E[\theta|\xi])(\theta - E[\theta|\xi])^T \right] \\ &= E \left[(\theta - E[\theta] - \operatorname{cov}(\theta, \xi) \operatorname{cov}(\xi, \xi)^{-1}(\xi - E[\xi])) \\ &\quad (\theta - E[\theta] - \operatorname{cov}(\theta, \xi) \operatorname{cov}(\xi, \xi)^{-1}(\xi - E[\xi]))^T \right] \\ &= E \left[(\theta - E[\theta])(\theta - E[\theta])^T \right] \\ &\quad - E \left[(\theta - E[\theta])(\operatorname{cov}(\theta, \xi) \operatorname{cov}(\xi, \xi)^{-1}(\xi - E[\xi]))^T \right] \\ &\quad - E \left[\operatorname{cov}(\theta, \xi) \operatorname{cov}(\xi, \xi)^{-1}(\xi - E[\xi])(\theta - E[\theta])^T \right] \\ &\quad + E \left[\operatorname{cov}(\theta, \xi) \operatorname{cov}(\xi, \xi)^{-1}(\xi - E[\xi]) \\ &\quad (\operatorname{cov}(\theta, \xi) \operatorname{cov}(\xi, \xi)^{-1}(\xi - E[\xi]))^T \right] \\ &= \operatorname{cov}(\theta, \theta) \\ &\quad - E \left[(\theta - E[\theta])(\xi - E[\xi])^T \right] \operatorname{cov}(\xi, \xi)^{-1} \operatorname{cov}(\theta, \xi)^T \\ &\quad - E \left[(\theta - E[\theta])(\xi - E[\xi])^T \right] \operatorname{cov}(\xi, \xi)^{-1} \operatorname{cov}(\theta, \xi)^T \\ &\quad + \operatorname{cov}(\theta, \xi) \operatorname{cov}(\xi, \xi)^{-1} E \left[(\xi - E[\xi])(\xi - E[\xi])^T \right] \\ &\quad \operatorname{cov}(\xi, \xi)^{-1} \operatorname{cov}(\theta, \xi)^T \end{split}$$

$$= \operatorname{cov}(\theta, \theta)$$

$$- \operatorname{cov}(\theta, \xi) \operatorname{cov}(\xi, \xi)^{-1} \operatorname{cov}(\theta, \xi)^{T}$$

$$- \operatorname{cov}(\theta, \xi) \operatorname{cov}(\xi, \xi)^{-1} \operatorname{cov}(\theta, \xi)^{T}$$

$$+ \operatorname{cov}(\theta, \xi) \operatorname{cov}(\xi, \xi)^{-1} \operatorname{cov}(\xi, \xi) \operatorname{cov}(\xi, \xi)^{-1} \operatorname{cov}(\theta, \xi)^{T}$$

$$= \operatorname{cov}(\theta, \theta)$$

$$- \operatorname{cov}(\theta, \xi) \operatorname{cov}(\xi, \xi)^{-1} \operatorname{cov}(\theta, \xi)^{T}$$

$$+ \operatorname{cov}(\theta, \xi) \operatorname{cov}(\xi, \xi)^{-1} \operatorname{cov}(\theta, \xi)^{T}$$

$$+ \operatorname{cov}(\theta, \xi) \operatorname{cov}(\xi, \xi)^{-1} \operatorname{cov}(\theta, \xi)^{T}$$

$$= \operatorname{cov}(\theta, \theta) - \operatorname{cov}(\theta, \xi) \operatorname{cov}(\xi, \xi)^{-1} \operatorname{cov}(\theta, \xi)^{T}$$

using linearity of expectation, removing non-random terms from expectation, definition of covariance and standard properties from linear algebra.

Theorem 4 (theorem on normal correlation – scalar version)

Let $(\theta, \xi)^T$ have a joint Gaussian distribution. Then the following properties hold.

- 1. If $cov(\theta, \xi) = 0$ then θ and ξ are independent.
- 2. If $var(\xi) > 0$ then the RV

$$\eta := \theta - E[\theta] - \frac{\operatorname{cov}(\theta, \xi)}{\operatorname{var}(\xi)}(\xi - E[\xi])$$

and $\boldsymbol{\xi}$ are independent.

3. If $var(\xi) > 0$ then

$$E[heta|\xi] = E[heta] + rac{\mathsf{cov}(heta,\xi)}{\mathsf{var}(\xi)}(\xi - E[\xi]).$$

Theorem 4 (cont.)

4. If $var(\xi) > 0$ then the autocovariance

$$cov(\theta, \theta|\xi) = E[(\theta - E[\theta|\xi])^2|\xi]$$
$$= E[(\theta - E[\theta|\xi])^2]$$
$$= var(\theta) - \frac{cov(\theta, \xi)^2}{var(\xi)}$$

Example.

Let

$$\begin{pmatrix} \theta \\ \xi \end{pmatrix} = \mathbf{N} \sim \left(\begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix} \right),$$

i.e. $\theta \sim N(1,5)$, $\xi \sim N(-1,1)$, $cov(\theta,\xi) = 2$ and (θ,ξ) are joint Gaussian.

Then

$$\begin{split} \mathsf{E}[\theta|\xi] &= \mathsf{E}[\theta] + \frac{\mathsf{cov}(\theta,\xi)}{\mathsf{var}(\xi)}(\xi - \mathsf{E}[\xi]) \\ &= 1 + \frac{2}{1}(\xi + 1) = 2\xi + 3 \end{split}$$

and

$$\begin{split} E[(\theta - E(\theta|\xi))^2] &= \operatorname{var}(\theta) - \frac{\operatorname{cov}(\theta,\xi)^2}{\operatorname{var}(\xi)} \\ &= 5 - \frac{2^2}{1} = 5 - 4 = 1. \end{split}$$

The TNC relies on the assumption that the random vectors $\boldsymbol{\theta} = (\theta_1, \dots, \theta_m)^T$ and $\boldsymbol{\xi} = (\xi_1, \dots, \xi_n)^T$ follow a joint Gaussian distribution.

The next example demonstrates that this is essential.

Example.

Consider two independent RVs $\xi \sim N(0,1)$ and $\zeta \sim N(0,1)$ so

$$E[e^{u\xi}]=E[e^{u\zeta}]=e^{\frac{1}{2}u^2}.$$

Consider now the pair of RVs θ and ξ where

$$heta = |\xi| \operatorname{sgn}(\zeta) = egin{cases} |\xi| & ext{if } \zeta \geq 0, \ -|\xi| & ext{if } \zeta < 0. \end{cases}$$

We shall show that

$$\theta \sim N(0,1)$$
 and $\operatorname{cov}(\theta,\xi) = 0$

despite θ , ξ being dependent (we show this at the end).

The MGF of θ for all $u \in \mathbb{R}$ is

$$E[e^{u\theta}] = E[e^{u|\xi|\operatorname{sgn}(\zeta)}]$$

= $E[E[e^{u|\xi|\operatorname{sgn}(\zeta)}|\xi]]$ (law of iterated conditioning)
= $E\left[\frac{1}{2}e^{u|\xi|} + \frac{1}{2}e^{-u|\xi|}\right] = E[\operatorname{cosh}(u|\xi|)] = E[\operatorname{cosh}(u\xi)]$
= $\frac{1}{2}E[e^{u\xi} + e^{-u\xi}] = e^{\frac{1}{2}u^2}$

showing $\theta \sim N(0, 1)$.

But the covariance

$$\begin{aligned} \operatorname{cov}(\theta,\xi) &= E[\theta\xi] - E[\theta]E[\xi] = E[|\xi| \operatorname{sgn}(\zeta)\xi] - 0 \\ &= E[|\xi|\xi]E[\operatorname{sgn}(\zeta)] \quad (\xi,\zeta \text{ are independent}) \\ &= E[|\xi|\xi]\operatorname{sgn}(E[\zeta]) = 0. \end{aligned}$$

Finally note that

$$|\xi| = |\theta|$$

and therefore

$$\mathsf{cov}(| heta|,|\xi|) = \mathsf{var}(|\xi|) = E[\xi^2] - (E[|\xi|])^2 = 1 - rac{2}{\pi} > 0$$

and we see there is some dependence between θ and ξ .

But Part 1 of Proposition 4 (TNC) says that θ and ξ are independent if $cov(\theta, \xi) = 0$.

So while θ and ξ may be scalar normal RVs, they cannot be joint-normal.

References I