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Constructing Gaussian vector RVs

We begin by providing two (equivalent) definitions of joint Gaussian
random vectors.

The first definition is based on scalar Gaussian RVs introduced in Chapter
1.

Definition 1 (Gaussian random vector 1)
We say that the random vector X = (Xi,...,X,)" has a joint Gaussian
(normal) distribution if it has the representation

X=m+L¢

where m € R" is a non-random vector, L € R"** is a non-random
matrix, € = (&1,...,&) 7, & ~ N(0,1) and &1, ..., & are independent.

Terminology. The vector X = m + L§ is called an affine-linear
transformation of the RV &.

3/38



Constructing Gaussian vector RVs

Notation.
The joint Gaussian vector RV X has expectation

E[X]|=E[m+ L&l =m+ LE[§]=m
and autocovariance

Q = cov(X, X) = E[(X — m)(X — m)T] = E[LE(LE)]
= LE[geTILT = LK LT = LL"

and we write X ~ N(m, Q).

Caution.
In most applications of this definition we will have k > n.

However, there may be cases where k < n.

In this case the n x n autocovariance matrix @ will have rank k and will
not be invertible.
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Constructing Gaussian vector RVs

The second definition is based on characteristic and moment generating
functions also introduced in Chapter 1.

Definition 2 (Gaussian random vector 2)

We say that the random vector X = (Xi,...,X,)" has a joint Gaussian
(normal) distribution if for all u € R" the CF of X has the form

QPX(U) - E[eiu~X] _ eim‘u—%wQu
or equivalently if the MGF of X has the form
Mx(u) := E[e"X] = e™ut3uQu

where m = E[X] € R" and Q = cov(X,X) € R"™" and z- Qz > 0 for
all z e R".

Notation.
X ~ N(m, Q).
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Constructing Gaussian vector RVs

The following example illustrates how both definitions can be used to
show that a vector of independent, standard normal RVs is joint Gaussian.

Example.
Let € = (&1,...,&,)7, & ~ N(0,1) and &, ..., &, are independent. We
have

E[&] =0 for all i,
var(&;) = cov(&;, &) =1 for all i

and by independence

cov(&i,&) =0 for all i # j

so
m=0 and Q=1,

where 0 is the zero vector in R” and I, is the identity matrix in R"*".

So by Definition 1, & ~ N(0, I,). To see this take m =0 and L =1, in
this definition.
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Constructing Gaussian vector RVs

We can also obtain this directly via
. n . n .
pe(u) =E[e€] = E[eXi 8| = E[ ] o]
k=1
=[] Ele**] (by independence)
k=1
n 1,72
= H e~ 2% (CF of N(0,1) RV — proof as exercise)
k=1

:e_%zzﬂ Yo — gm3uu — g3l (1)

So by Definition 2, € ~ N(0, 1,). To see this take m =0 and Q = I, in
this definition.
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Constructing Gaussian vector RVs

Below is Mathematica code and plots of two 2D Gaussian RV PDFs.

p=0.9;
gl = Plot3D[PDF [MultinormalDistribution[ {0, 0}, {{1, o}, {p, 1}}1, {X, ¥}1, {x, -4, 4},
{y, -4, 4}, PlotRange - All, AxesLabel » {x, y}, PlotLabel -» "cov(X,Y) = 0.9"];

p=-0.5;
g2 = Plot3D[PDF [MultinormalDistribution[ {0, @}, {{1, o}, {P, 1}}1, {X, ¥}1, {x, -4, 4},
{y, -4, 4}, PlotRange - All, AxesLabel » {x, y}, PlotLabel » "cov(X,Y) = -0.5"];

GraphicsGrid[{{gl, g2}}]
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Constructing Gaussian vector RVs

Comments. Note that according to these definitions any deterministic
vector x has a Gaussian distribution x ~ N(x,0).

More generally, if Q > 0 (that is z- Qz > 0 for any z # 0) then
det(Q) > 0.

This in turn means the inverse matrix Q! exists allowing the PDF for
X ~ N(m, Q) to be defined as

1 _
A —— G R G

(27)/2, /det(Q)

Definition 1 is a kind of direct probabilistic approach based on use of a
fundamental RV (& ~ N(0,1) and independent). It is used in
simulations.

Definition 2 is a kind of analytical approach based on analytical tools
(the CF and MGF).
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Constructing Gaussian vector RVs

The following theorem shows the equivalence of the two previous
definitions.

Theorem 1 (constructing multivariate Gaussian RVs)

Definitions 1 and 2 are equivalent with m = E[X] and Q = cov(X, X).

Proof.
Part 1. Showing Definition 1 implies Definition 2.

We have &€ = (&1,...,&,) T ~ N(0, 1,) so

E[e"X] = E[e/(m+LO)] = ¢imuE[e/uL&]  (non-random terms)
eimAUE[eiLTuf] — lm uefi(LT u)-LTu
(replace u with L™ u in equation (1) to see)

im-u ——(LTu) L"u _ imu—3 luTLLTu im‘u—%u»(LLT)u

=é€ =€ =€

and we can conclude that Definition 2 holds with @ = LLT.
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Constructing Gaussian vector RVs

Part 2. Showing Definition 2 implies Definition 1.

We have X ~ N(m, Q) and assume that z- Qz > 0 for all z # 0
(shorthand Q > 0) so that det(Q) > 0.

We need to find L such that X = m + L§ where & ~ N(0, I,).

There are many ways to find such an L, such as the Cholesky

decomposition
Q=H'"H,

which exists because @ > 0. Here H is an upper triangular matrix and
HT is a lower triangular matrix.
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Constructing Gaussian vector RVs

Also because @ > 0 the inverse Q! exists and

det(Q) = det(HT H) = det(H") det(H) = (det(H))?
(det. of triangular matrix is product of diag. components)
>0

so det(HT) # 0 showing (HT)™! also exists.
Taking L = HT we have
X=m+H'¢

E=(H)H(X—m)=(H")(X~-m)

by the transpose and inverse properties of real matrices.
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Constructing Gaussian vector RVs

Therefore
E[eiu-£] — E[eiu-(H_l)T(Xfm)] — E[ei(H_lu)-(Xfm)]
= e*"(H_l")'mE[e"(H_I")'X] (non-random terms)
= e (H ' u)mgim-H ™ u—3(H™"u)-QH u (by Definition 2)
_ e_%uT(Hfl)TOHflu _ e_%uT(HT)flonlu _ e_%uTInu
= eféu'“
as
Q=H"H = (H)'QH = (H") *HTHH ' =1,

So we see & ~ N(0, I,), or & ~ N(0,1) for all i with

cov(&;, &) =0 forall i # j

implying their independence.
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Constructing Gaussian vector RVs

Below is some Mathematica code and output used to obtain and verify
Cholesky decomposition.

Q= {{1, 2}, {2, 5}};

HH = CholeskyDecomposition[QQ] ;
HH // MatrixForm

(a1
01
Transpose[HH] .HH // MatrixForm

(3 5)
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Constructing Gaussian vector RVs

Exercise.
Let & ~ N(m, Q) where

2
m = (m1> ) Q = ( o1 p01202> ) -1 S P S 1.
my pPoO10?2 05

Find E[e™¢] and show that p = 0 implies &; and & are independent.

Solution. By Definition 2

E[eiu-g] _ eim-u—%u-(;)u
. 1 2 2 2 2
_ el(m1u1+m2uz)f5(01u1+2p0102u1uz+02u2)
_ ei(m1u1+m2uQ)f%(afuf«ka%ug) (taking p= 0)

; 22 22 . .
_ elmlul—%olul elmzuz—%0'2u2 — E[elu1€1]E[e"—l2§2]

showing &; and &, are independent.
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Affine-linear transform of Gaussian vector RVs

The next theorem is a major result that show a linear affine
transformation applied to a joint Gaussian (normal) random vector
produces another joint Gaussian random vector.

Theorem 2 (affine-linear transform of Gaussian RVs)

Let X = (X1,...,Xk)T ~N(m, Q) and let Y = (Y1,...,Y,)" be an
affine-linear transformation of X, i.e.

Y =b+ AX
where b € R” and A € R™*¥ are deterministic.

Then Y ~ N(Am + b, AQAT).
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Affine-linear transform of Gaussian vector RVs

Proof.
Method 1. The CF of Y is given by

E[e™Y] = E[e’*(b+AX)] = ¢/buE[e"AX]  (non-random terms)
_ eib~uE[ei(ATu)~X]

— eib-ugim(ATu)=3(ATu)-QA"u (replace u with AT u in Def. 2)

_ eib»uei(Am)-uf%u»AQATu _ ei(b+Am)~u7%u-AQATu

which by Definition 2 gives Y ~ N(b + Am,AQAT).
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Affine-linear transform of Gaussian vector RVs

Method 2. Note that for suitable deterministic L € R**¥ we can re-write

Y as
Y=b+AX=b+A(m+ L) =b+ Am+ ALE

where € = (&1,...,&) T ~ N(0, 1), which by Definition 1 shows that Y is
Gaussian (replace m with b+ Am and L with AL to see).

The expectation of Y is

E[Y] = E[b+ Am + AL¢]
=b+ Am+ ALE[] (non-random terms)
=b+ Am.
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Affine-linear transform of Gaussian vector RVs

The autocovariance of Y is

cov(Y, ¥) = E[(Y — E[Y])(Y — E[Y])T]
= E[ALE(ALE)T] = E[ALEETLTAT]
= ALE[EET]LTAT (non-random terms)
= ALE[(¢ - E[¢])(& - E[ED)TILTAT  (E[6]=0)
= ALcov(¢,€)LTAT = ALILLTAT = ALLTAT
= AQAT  (see proof (Part 1) of Theorem1)

which gives Y ~ N(b+ Am,AQAT).
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Theorem on normal correlation (TNC) — vector RVs

Theorem 3 (theorem on normal correlation — vector version)

Let random vectors 8 = (61, ...,0,,)7 and & = (&1, ..,&,) " have a joint
Gaussian distribution. Then the following properties hold.

1. If cov(0,&) = 0 then 6 and & are independent.
2. If u-cov(&, &)u > 0 for any u # 0 then the RV
n =0 — E[0] — cov(, &) cov(€, &) (€ — E[€])

and & are independent.
3. If u-cov(&,&)u > 0 for any u # 0 then

E[6]€] = E[6] + cov(, £) cov(€, €)' (€ — E[€]).
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Theorem on normal correlation (TNC) — vector RVs

Theorem 3 (cont.)

4. If u-cov(&,&)u > 0 for any u # 0, then the conditional
autocovariance

cov(0, 0|€) = E[(6 — E[0]€])(6 — E[0]€]) T [¢]
= E[(6 — E[6]€])(0 — E[0]€])T]
= cov(0,0) — cov(0, &) cov(ﬁ,é)f1 cov(6, f)T-

Note to Part 1.
We know that for any RVs, independence implies zero covariance.

TNC Part 1 works the other way, stating that for joint Gaussian RVs,
zero covariance implies independence.

This is convenient, as verifying zero covariance is easier than verifying

independence directly.
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Theorem on normal correlation (TNC) — vector RVs

Note to Part 2 and 3.
If we combine these results we have

n:=0—-E[0l¢] and &
are independent.

In the supporting notes to this chapter, we show that ordinary least
squares regression is a particular application of Part 3.

In this context we can interpret this result as saying that the noise terms
1 and the predictors (covariates) & are independent.

However, in this subject the main use we have for this result is in the
proof of Part 4, with the second line as stated following immediately.
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Theorem on normal correlation (TNC) — vector RVs

Note to Part 3 and 4.
Although we don't prove this, the conditional distribution

01{¢ = x} ~ N(u(x), 0%(x))

where
p(x) = E[6¢ = x]

and
a?(x) := cov(8,0|¢ = x).

are given by Parts 3 and 4 respectively.
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Theorem on normal correlation (TNC) — vector RVs

Proof.
Part 1. If we can show the joint CF of 8, £ is the product of the marginal
CFs, i.e. . ‘ ‘

E[el(z-0+u-£)] _ E[elzﬂ]E[elu{L

then by the one-to-one relationship between CFs and distributions we will
have shown that 6 and £ are independent.

Proceeding, first note that because 8, & are joint Gaussian then for
zeR"and u e R"
z-0+u-§,

are also are joint Gaussian by Theorem 2.

So by Definition 2

E[ei(z‘e—ku‘g)] _ eiE[z-G—}—u{]—%var(z‘9+u‘§).
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Theorem on normal correlation (TNC) — vector RVs

Next note that

var(z- 0+ u-&) =var(z-0) +var(u-€)+2cov(z-0,u- &)
where
cov(z-0,u-&) =z cov(0,€)u (check this yourselves)
=z-0u=0.
Therefore
E[ei(z~9+u~£)] _ oiElz:60+ug]—} var(z-0+u-€)

— lE[z:0+u-g]—4(var(z-0)+var(u-€))
— lElz:0]—} var(z:0) SiE[u-£] -} var(u-§)
— E[e']E[e’€]

and we have the desired result.
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Theorem on normal correlation (TNC) — vector RVs

Part 2. Observe that

cov(n, &) = E[(n — E[n])(& — E[E])T] = E[n(¢ — E[¢])T]
= E[(6 — E[6] — cov(B, &) cov(&,£) 1 (& — E[£])) (€ — E[€])T]
= E[(6— E[0])(¢ — E[£])7]
— cov(B, &) cov(&, &) T E[(¢& — E[E])(& - E[]D]

(linearity and non-random terms)

= cov(,€) — cov(8, §) cov(€,€) " cov(§, &)
= cov(0,&) —cov(6,£) =0

which by Part 1 TNC shows that n and £ are independent (zero
covariance implies independence for joint Gaussian RVs).
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Theorem on normal correlation (TNC) — vector RVs

Part 3. The conditional expectation

E[nl€] = E[6 — E[6] — cov(8, &) cov(€, €)' (€ — E[€]) €]
= E[0]€] — E[0] — cov(8, &) cov(§, &) (E[E[€] — E[€])

(linearity and non-random terms)

= E[0]€] — E[6] — cov(8, &) cov(€, €)1 (€ — E[€])

(see properties of conditional expectation Chapter 1).
But from Part 2 of this proof we know that 7 and & are independent so
E[nl§] = E[n] =0

giving
E[0]€] = E[6] + cov(0, ) cov(&, )" (€ — E[£]).

27/38



Theorem on normal correlation (TNC) — vector RVs

Part 4. First note that

0 — E[0]€] = 6 — E[6] — cov(8, &) cov(£, &) (€ — E[€])
=n
and & are independent by Part 2 of this theorem which gives
E[(6 — E[0[€])(6 — E[6IE]) T |€] = E[(6 — E[6]€])(6 — E[6]€])T]

by properties of conditional expectation Chapter 1.

28/38



Theorem on normal correlation (TNC) — vector RVs

Then
E[(6 — E[0]¢])(6 — E[0]€])T]
= E[(6 — E[6] — cov(6, &) cov(&, &) (& — E[€]))
(6 — E[6] — cov(8, &) cov(&, €)' (£ — E[€])) ]
= E[(6 — E[6])(6 — E[6])"]
— E[(6 — E[6])(cov(, &) cov(¢,€) (€ — E[€])]
— E[cov(8,&) cov(&,€) (& — E[€])(6 — E[6]) "]
+ E[cov(8, &) cov(€,€) (& — E[€])
(cov(0, &) cov(&,€) " (& — E[¢])T]
= cov(6,0)
— E[(6— E[6])(& — E[€])7] cov(&,£) " cov(6,£)7
— E[(6— E[6])(& — E[€])7] cov(&,£) " cov(6,£)7
+cov(6, &) cov(€, &) TE[(& — E[€])(& — E[E])T]
cov(€,€)  cov(0,€)7
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Theorem on normal correlation (TNC) — vector RVs

= cov(6,0)

— cov(0, &) cov(€,€) L cov(B,€)T

—cov(0, &) cov(&,€) L cov(B,€)T

+cov(6, €) cov(€, &)~ cov(&,€) cov(,€) " cov(8,6)T
= cov(6,0)

—cov(0, &) cov(€,€) L cov(B, €))7

—cov(0, &) cov(€,€) L cov(B,€)T

+ cov(8, &) cov(&,€) L cov(8,€)T
= cov(8,0) — cov(B, &) cov(€,€) Lcov(B, €)T

b

using linearity of expectation, removing non-random terms from
expectation, definition of covariance and standard properties from linear
algebra.
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Theorem on normal correlation (TNC) — scalar RVs

Theorem 4 (theorem on normal correlation — scalar version)

Let (0,€)" have a joint Gaussian distribution. Then the following
properties hold.

1. If cov(6,&) = 0 then # and ¢ are independent.

2. If var(&) > 0 then the RV

e cov(,§)
n:=0—E[f] - var(®) — = (E— E[¢])
and £ are independent.
3. If var(€¢) > 0 then
Elole] = £16) + <208 g

var(€)
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Theorem on normal correlation (TNC) — scalar RVs

Theorem 4 (cont.)

4. If var(&) > 0 then the autocovariance

cov(0, 01¢) = E[(6 — E[0]¢])?/¢]
= E[(9 — E[0]¢])°]

I (X35
=6~ ~arte)
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Theorem on normal correlation (TNC) — scalar RVs
Example.
0 1\ (5 2
O-n-((2)G 1)

Let
i.e. 0~ N(1,5), & ~ N(—1,1), cov(6,£) =2 and (0,&) are joint

Gaussian.
Then
B cov(0,8) .
E16]€] = E[6] + var(©) (€~ El¢)
= 1+%(§+1):2£+3
and
cov 2
E0 — E(16))7] = var(e) - S

22
=5- 2 =5-4=1.
1
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Theorem on normal correlation (TNC) — scalar RVs

The TNC relies on the assumption that the random vectors
0= (01,...,0,)7 and € = (&1,...,&,)7 follow a joint Gaussian
distribution.

The next example demonstrates that this is essential.

Example.
Consider two independent RVs & ~ N(0,1) and ¢ ~ N(0,1) so

E[e"] = E[e%] = e3*".

Consider now the pair of RVs 6 and £ where

_ _Jlgr if¢=0,
0 = lelsgn(C) = {_ﬂ oo
We shall show that

6~ N(0,1) and cov(0,&)=0

despite 6, ¢ being dependent (we show this at the end).
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Theorem on normal correlation (TNC) — scalar RVs

The MGF of 8 for all u € R is

E[e"?] = E[evI¢ls&n(<)]

= E[E[e”‘g‘sg”(oﬁ]] (law of iterated conditioning)

1, el _
5e lel 4 5€ ‘5‘} = E[cosh(ul¢])] = E[cosh(u€)]

1
= 5E[e”£ + ef”g] — 3

:E[

showing 6 ~ N(0,1).
But the covariance

cov(,&) = E[0¢] — E[0]E[¢] = E[|¢|sgn(C)¢] — O
= E[[¢[¢]E[sgn(C)] (& ¢ are independent)
= E[|¢|¢]sgn(E[¢]) = 0.
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Theorem on normal correlation (TNC) — scalar RVs

Finally note that
€l =16

and therefore
2
cov(|6], [¢]) = var(|¢]) = E[€”] - (E[IEN)* =1 - = >0
and we see there is some dependence between 6 and £.

But Part 1 of Proposition 4 (TNC) says that § and ¢ are independent if
cov(6,&) = 0.

So while 6 and £ may be scalar normal RVs, they cannot be joint-normal.

36/38



References |

37/38



