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Convergence of RVs

We are interested in two of the most important limit theorems in
probability, the Law of Large Numbers (LLN) and the Central Limit
Theorem (CLT), both of which are very important in applications.

The LLN states that, given certain conditions, the arithmetic mean of a
sufficiently large number of independent and identically distributed (iid)
RVs, each with a well-defined (finite) expected value will be
approximately equal to a constant.

The CLT states that, given certain conditions, the normalised
arithmetic mean of a sample of iid RVs will be approximately
normally distributed, regardless of the underlying distribution.

Both LLN and CLT are used to justify approximations obtained by
simulation of RVs using the Monte Carlo and other approaches.
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Convergence of RVs

Approximations of RVs are often of the form

ξn ≈ ξ

where n, the sample size of simulations, is a parameter of interest.

Example.
As discussed in Chapter 1, we have the convergence of frequency to
probability

n(A)
n → P(A) as n → ∞

and so for sufficiently large n

n(A)
n ≈ P(A).

——————————————————————————————
In applications other parameters could be of interest, e.g. sample mean
etc.

4 / 47



Convergence of RVs

To prove many properties and theorems, the convergence of sequences of
RVs must be considered.

The proximity of RVs ξn and ξ may be understood in a number of ways.

Typical measures of proximity include probability

P(|ξn − ξ| > ε)

and mean square
E [|ξn − ξ|2]

which give rise to weaker forms of convergence than pointwise
convergence encountered in real analysis.

We are going to define three types of convergence.
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Convergence of RVs

Definition 1 (convergence in probability)
A sequence of RVs ξn converges to ξ in probability if for any ε > 0

lim
n→∞

P(|ξn − ξ| > ε) = 0.

To indicate this form of convergence we write

ξn
P→ ξ or lim

n→∞
ξn

P= ξ.

Other properties follow from this definition.

Proposition 1
If ξn

P→ ξ and ηn
P→ η then

(ξn + ηn) P→ ξ + η and (ξnηn) P→ ξη.

6 / 47



Convergence of RVs

A stronger form of convergence is “mean square” or “L2”.

Definition 2 (convergence in mean square)
A sequence of RVs ξn converges to ξ in mean square if

lim
n→∞

E [|ξn − ξ|2] = 0

where E [|ξn|2], E [|ξ|2] < ∞. To indicate this form of convergence we
write

ξn
L2

→ ξ or lim
n→∞

ξn
L2

= ξ.

The notation “L2” refers to the L2 function space. The interested reader
is referred to [Rudin, 1976].

Note that ξn
L2

→ ξ ⇒ ξn
P→ ξ.
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Convergence of RVs

The strongest form of convergence in probability is “almost sure”.

Definition 3 (almost sure convergence)
A sequence of RVs ξn converges to ξ almost surely (or with probability
one) if

P( lim
n→∞

ξn = ξ) = 1.

To indicate this form of convergence we write

ξn
a.s.→ ξ or lim

n→∞
ξn

a.s.= ξ.

This is weaker than pointwise convergence (sure convergence)
encountered in real analysis. The details are technical and involve
measure theory – the interested reader is referred to [Chung, 2001].

Note that ξn
a.s.→ ξ ⇒ ξn

P→ ξ.
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Convergence of RVs

A particularly useful result is the Chebyshev-Markov inequality, which
relates ideas from convergence in both probability and mean square.

Proposition 2 (Chebyshev-Markov inequality)
For any RVs ξn, ξ and ε > 0

P(|ξn − ξ| > ε) ≤ E [|ξn − ξ|2]
ε2 .

Proof.
We see that

E [|ξn − ξ|2] ≥ E [|ξn − ξ|2I(|ξn − ξ| > ε)]
≥ E [ε2I(|ξn − ξ| > ε)] = ε2E [I(|ξn − ξ| > ε)]
= ε2P(|ξn − ξ| > ε).

——————————————————————————————
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Convergence of RVs

As an aside we will show why the last step of the previous proof holds.

Recall the indictor function I(X > a), with X a RV and a ∈ R, is defined
as

I(X > a) =
{

1 if X > a,

0 if X ≤ a.

Now suppose that X is continuous with PDF fX and observe

E [I(X > a)] =
∫ ∞

−∞
I(x > a)fX (x)dx =

∫ ∞

a
fX (x)dx

= P(X > a).

The result also holds if X has no PDF or if X is discrete.
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Limit theorems

With these results we can derive the first of two very important limit
theorems.

Theorem 1 (weak law of large numbers (WLLN) – Markov)
Let X1, X2, . . . , Xn be a sequence of uncorrelated RVs with

E [Xi ] = m and var(Xi) ≤ c < ∞

for all i ∈ {1, 2, . . . , n} where m ∈ R and c > 0. Then as n → ∞

1
n

n∑
i=1

Xi
P→ m.

That is, the sample mean converges to the population mean as the
sample size grows ever larger.
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Limit theorems

Proof.
Taking ξn = 1

n
∑n

i=1 Xi and

ξ = E [ξn] = E
[1

n

n∑
i=1

Xi

]
= 1

n

n∑
i=1

E [Xi ] = 1
n

n∑
i=1

m = m

in the Chebyshev-Markov inequality (Proposition 2) gives

P
(∣∣∣1

n

n∑
i=1

Xi − m
∣∣∣ > ε

)
≤

E
[∣∣ 1

n

n∑
i=1

Xi − m
∣∣2]

ε2

for any ε > 0 where

E
[∣∣∣1

n

n∑
i=1

Xi − m
∣∣∣2]

= var
(1

n

n∑
i=1

Xi

)
= 1

n2

n∑
i=1

(var(Xi)) ≤ cn
n2 = c

n

with second equality following from the zero covariance assumption.
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Limit theorems

That is

P
(∣∣∣1

n

n∑
i=1

Xi − m
∣∣∣ > ε

)
≤ c

nϵ2

so

lim
n→∞

P
(∣∣∣1

n

n∑
i=1

Xi − m
∣∣∣ > ϵ

)
= 0

and we have by Definition 1 that 1
n

∑n
i=1 Xi

P→ m.
——————————————————————————————

There is a version of this theorem by Kolmogorov called the strong law of
large numbers (SLLN) where the convergence in probability is
strengthened to almost sure convergence.
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Limit theorems

Finally, the other very important limit theorem.

Theorem 2 (central limit theorem (CLT))
Let X1, X2, . . . , Xn be a sequence of iid RVs with

E [Xi ] = m and var(Xi) = σ2 < ∞

for all i ∈ {1, 2, . . . , n} and define

ξn =
1
n

∑n
i=1 Xi − m
σ/

√
n

and the standard normal, or N(0, 1), distribution function

Φ(x) = 1√
2π

∫ x

−∞
e− u2

2 du.

Then for all x ∈ R
lim

n→∞
P(ξn ≤ x) → Φ(x).

——————————————————————————————
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Stochastic simulation

Monte-Carlo is a method of approximating the solution of complex
physical or mathematical systems based on use of random variables.

The method was adopted and improved by John von Neumann and
Stanislaw Ulam during the “Manhattan Project” of World War II, which
produced the first atomic bomb.

Stanislaw Ulam (1909-1985). Polish-born US mathematician. Migrated
to USA in 1936 and joined the Institute of Advanced Study at Princeton.

John von Neumann (1903-1957). Hungarian born US scientist and
mathematician, a pioneer of computer design, was a professor at
Princeton University from 1931.

15 / 47



Stochastic simulation

Books on Monte Carlo methods
Monte Carlo: Concepts, Algorithms, and Applications
[Fishman, 1995]
Monte Carlo Methods in Financial Engineering [Glasserman, 2004]
Monte Carlo Methods in Finance [Jäckel, 2002]
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Stochastic simulation – Monte Carlo approximation

Let X = (X1, . . . , Xm)T be a random vector on (Ω, F , P) and
g : Rm → R be a given function with properly defined expectation

G := E [g(X)].

If we can generate a sequence of independent RVs X1, . . . , Xn, all from
the same distribution as X (i.e. iid), then according to the WLLN
(Theorem 1)

Gn := 1
n

n∑
i=1

g(Xi)
P→ E [g(X)] = G

which can be improved to almost sure convergence under the SLLN.
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Stochastic simulation – Monte Carlo approximation

Note that Gn is an unbiased estimator of G as

E [Gn] = E
[1

n

n∑
i=1

g(Xi)
]

= 1
n

n∑
i=1

E [g(Xi)] = 1
n

n∑
i=1

E [g(X)]

= E [g(X)] = G .

In particular, if X has PDF (density) fX then

G =
∫ ∞

−∞
. . .

∫ ∞

−∞
g(x1, . . . , xm)fX(x1, . . . , xm)dx1 · · · dxm

and so we have an algorithm for approximating multidimensional
integrals!
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Stochastic simulation – Monte Carlo approximation

To estimate accuracy of the approximation, we assume

σ2(g) := var(g(X)) < ∞

and note that

var(Gn) = var
(1

n

n∑
i=1

g(Xi)
)

= 1
n2

n∑
i=1

var
(
g(Xi)

)
(independence)

= 1
n2

n∑
i=1

var
(
g(X)

)
= σ2(g)

n .

Then by the CLT (Theorem 2)

lim
n→∞

1
n

∑n
i=1 g(Xi) − E [g(X)]√

var(g(X))/n
= lim

n→∞

Gn − G
σ(g)/

√
n

∼ N(0, 1).
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Stochastic simulation – Monte Carlo approximation

This can be rearranged to give the (1 − α)% confidence interval, or error
bound,

|G − Gn| ≤ z1−α/2
σ(g)√

n
where z1−α/2 is the 1 − α

2 quantile from the N(0, 1) distribution.

In practice though, σ2(g) will rarely be known, but it can be estimated as

σ̂2
n(g) := 1

n

n∑
i=1

g2(Xi) − (Gn)2 P→ E [g2(X)] − G2 = σ2(g).
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Stochastic simulation – Monte Carlo approximation

Definition 4 (big O notation)
Let the functions f , r be defined on some unbounded subset of R>0
where r is positive and monotone. Then we write

f (x) = O(r(x)) as x → ∞

if there exists a c > 0 and sufficiently large x0 ∈ R>0 such that

|f (x)| ≤ cr(x) for all x ≥ x0.

Using this definition we can write

|Gn − G | = O(n− 1
2 )

with probability close to one.
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Stochastic simulation – Monte Carlo approximation

Comparison to quadrature.
The most commonly encountered multivariate quadrature (numerical
integration) techniques is Simpson’s rule.

Using Simpson’s rule to estimate G results in an approximation error
which is O(n− 4

m ), although other conditions must also be satisfied to use
this technique.

We see for n > 1 that n− 1
2 < n− 4

m when m > 8.

That is, for integration problems involving m > 8 dimensions, the
Monte-Carlo approach is asymptotically faster than Simpson’s rule!
——————————————————————————————
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Stochastic simulation – Monte Carlo approximation

Example.
Take

G =
∫ 1

0
xe−x dx ≈ 0.26424.

Solution 1. If we consider the RV X ∼ U(0, 1) with PDF
fX (x) = I(0 ≤ x ≤ 1) and the function g(x) = xe−x , then this integral
can be re-written as

G = E [g(X )] =
∫ ∞

−∞
xe−x I(0 ≤ x ≤ 1)dx

=
∫ 1

0
xe−x dx ≈ 0.264241

with
σ2(g) = var(g(X )) = E [g2(X )] − E [g(X )]2

=
∫ ∞

−∞
x2e−2x I(0 ≤ x ≤ 1)dx − G2 =

∫ 1

0
x2e−2x dx − G2

≈ 0.0110075.
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Stochastic simulation – Monte Carlo approximation

Solution 2. If we consider the RV X ∼ Exp(1) with PDF
fX (x) = e−x I(x ≥ 0) and the function g(x) = xI(x ≤ 1), then this
integral can be re-written as

G = E [g(X )] =
∫ ∞

−∞
xI(x ≤ 1)e−x I(x ≥ 0)dx

=
∫ 1

0
xe−x dx ≈ 0.264241

with

σ2(g) = var(g(X )) = E [g2(X )] − E [g(X )]2

=
∫ ∞

−∞
x2I2(x ≤ 1)e−x I(x ≥ 0)dx − G2

=
∫ 1

0
x2e−x dx − G2 ≈ 0.0907794

which is not as accurate as Solution 1.
——————————————————————————————
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Stochastic simulation – MC variance reduction

In the section above we introduced the “cude Monte Carlo” estimator for
G = E [g(X)], namely

Gn = 1
n

n∑
i=1

g(Xi).

Besides simplicity, this has several nice properties:

1 it is consistent, i.e. Gn
P→ E [g(X)]

2 it is unbiased, i.e. E [Gn] = E [g(X)]
3 and it is asymptotically normal, i.e.

P
(

|Gn − G | < z σ(g)√
n

)
→ 2Φ(z) − 1

where σ2(g) = var(g(X)) and Φ is the N(0, 1) distribution function.

There are many methods for reduction of variance σ2(g). We shall
discuss only two of the most popular: control variates and antithetic
variates.
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Stochastic simulation – MC variance reduction

CONTROL VARIATES
A control variate is a RV q(X) such that the constant

Q = E [q(X)]

is known.

Consider now the estimator

Qn = 1
n

n∑
i=1

q(Xi)

which allows the construction of another estimator for G

G̃n = Gn − a(Qn − Q)

where a ∈ R is a parameter chosen to minimise the variance of G̃n.
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Stochastic simulation – MC variance reduction

Since Gn
P→ G and Qn

P→ Q we have

G̃n
P→ G .

Also, G̃n is an unbiased estimator of G as

E [G̃n] = E [Gn − a(Qn − Q)]
= E [Gn] − aE [Qn] + aQ (linearity, non-random terms)

= G − aE
[1

n

n∑
i=1

q(Xi)
]

+ aQ

= G − a 1
n

n∑
i=1

E [q(Xi)] + aQ

= G − a 1
n

n∑
i=1

E [q(X)] + aQ

= G − aQ + aQ = G .
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Stochastic simulation – MC variance reduction

Now assume that
σ2(q) := var(q(X)) < ∞

and define
σ2(g − aq) := var(g(X) − aq(X))

= σ2(g) + a2σ2(q) − 2a cov(g(X), q(X))
so that

var(G̃n) = var(Gn − a(Qn − Q))
= var(Gn − aQn) (remove non-random terms)
= var(Gn) + a2 var(Qn) − 2a cov(Gn, Qn)

= σ2(g − aq)
n .

Then by the CLT (Theorem 2)

lim
n→∞

G̃n − G
σ(g − aq)/

√
n

∼ N(0, 1).
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Stochastic simulation – MC variance reduction

We see that like the crude MC estimator, the control variate estimator:
1 is consistent, i.e. G̃n

P→ E [g(X)]
2 is unbiased, i.e. E [G̃n] = E [g(X)]
3 and is asymptotically normal, i.e.

P
(

|G̃n − G | < z σ(g − aq)√
n

)
→ 2Φ(z) − 1

where Φ is the N(0, 1) distribution function.
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Stochastic simulation – MC variance reduction

It remains to find the optimum value of a, a∗, where the minimum of
σ2(g − aq) is attained.

This function is quadratic in a, so a∗ satisfies

d
da σ2(g − aq)|a=a∗ = 0

or

a∗σ2(q) − cov(g(X), q(X)) = 0

so

a∗ = cov(g(X), q(X))
σ2(q) .
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Stochastic simulation – MC variance reduction

The minimum variance estimator G̃n has

var(G̃n) = σ2(g − a∗q)
n

= 1
n

(
σ2(g) +

(cov(g(X), q(X))
σ2(q)

)2
σ2(q)

− 2cov(g(X), q(X))
σ2(q) cov(g(X), q(X))

)
= 1

n

(
σ2(g) − cov(g(X), q(X))2

σ2(q)

)
= σ2(g)

n (1 − ρ2
g,q)

where
ρg,q := cov(g(X), q(X))

σ(g)σ(q) .

It is now clear we should choose a control variate – we choose a q(X)
strongly correlated (positively or negatively) with g(X).
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Stochastic simulation – MC variance reduction

For example, if |ρg,q| = 9
10 then

var(G̃n) = σ2(g − a∗q)
n = 19

100
σ2(g)

n = 19
100 var(Gn).

Instead of reducing MC variance the estimator can be used to reduce the
number of simulations.

Let m and n be the number of simulations used in the crude and control
variate MC estimators and note that

var(Gm) = var(G̃n) ⇒ σ2(g)
m =

σ2(g)(1 − ρ2
g,q)

n
⇒ n = m(1 − ρ2

g,q) = 19
100m.

Even larger reductions in variance (or number of simulations) can be
achieved with the use of two or more control variates.
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Stochastic simulation – MC variance reduction

Example.
Recall our earlier example using the RV X ∼ U(0, 1) with PDF
fX (x) = I(0 ≤ x ≤ 1) and the function g(x) = xe−x , where we
investigated crude MC estimation of

G = E [g(X )] =
∫ ∞

−∞
xe−x I(0 ≤ x ≤ 1)dx

=
∫ 1

0
xe−x dx ≈ 0.264241

with

σ2(g) = var(g(X )) = E [g2(X )] − E [g(X )]2

=
∫ ∞

−∞
x2e−2x I(0 ≤ x ≤ 1)dx − G2

=
∫ 1

0
x2e−2x dx − G2 ≈ 0.0110075.
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Stochastic simulation – MC variance reduction

Now we calculate the reduction in variance that can be obtained using
the control variate q(x) = x such that

Q = E [q(X )] =
∫ ∞

−∞
xI(0 ≤ x ≤ 1)dx

=
∫ 1

0
xdx = 0.5

with

σ2(q) = var(q(X )) = E [q2(X )] − E [q(X )]2

=
∫ ∞

−∞
x2I(0 ≤ x ≤ 1)dx − Q2

=
∫ 1

0
x2dx − Q2 ≈ 0.0833333.
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Stochastic simulation – MC variance reduction

So
cov(g(X ), q(X )) = E [g(X )q(X )] − E [g(X )]E [q(X )]

=
∫ ∞

−∞
xe−x xI(0 ≤ x ≤ 1)dx − GQ

=
∫ 1

0
x2e−x dx − GQ ≈ 0.0284822

and

a∗ = cov(g(X ), q(X ))
var(q(X )) ≈ 0.341787

giving
ρg,q = cov(g(X ), q(X ))√

var(g(X )) var(q(X ))
≈ 0.940416.

We see that the ratio of variance for the two MC estimators
var(Gn)
var(G̃n)

= σ2(g)
σ2(g − a∗q) = 1

1 − ρ2
g,q

≈ 8.64913.
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Stochastic simulation – MC variance reduction

ANTITHETIC VARIATES
Antithetic variates are two RVs g1(X) and g2(X) with the same
distribution so that

G = E [g1(X)] = E [g2(X)] = E [g1(X) + g2(X)]
2

but with
cov(g1(X), g2(X)) < 0.

These allow the construction of another estimator for G

Ĝn = 1
2n

n∑
i=1

(
g1(Xi) + g2(Xi)

)
.
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Stochastic simulation – MC variance reduction

In a similar way as we showed Gn
P→ G we have

Ĝn
P→ G .

Also, Ĝn is an unbiased estimator of G as

E [Ĝn] = E
[ 1

2n

n∑
i=1

(
g1(Xi) + g2(Xi)

)]
= 1

2n

n∑
i=1

(
E [g1(Xi)] + E [g2(Xi)]

)
= 1

2n

n∑
i=1

(
E [g1(X)] + E [g2(X)]

)
= 1

2n

n∑
i=1

2G = G .
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Stochastic simulation – MC variance reduction

Now assume that
σ2(g1) := var(g1(X)) < ∞

and
σ2(g2) := var(g2(X)) < ∞

and define

σ2(g1 + g2) := var(g1(X) + g2(X))
= σ2(g1) + σ2(g2) + 2 cov(g1(X), g2(X))

so that

var(Ĝn) = σ2(g1 + g2)
4n .

Then by the CLT (Theorem 2)

lim
n→∞

Ĝn − G
σ(g1 + g2)/

√
4n

∼ N(0, 1).
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Stochastic simulation – MC variance reduction

We see that like the crude MC estimator, the antithetic variate estimator:

1 is consistent, i.e. Ĝn
P→ G

2 is unbiased, i.e. E [Ĝn] = G
3 and is asymptotically normal, i.e.

P
(

|Ĝn − G | < z σ(g1 + g2)√
4n

)
→ 2Φ(z) − 1

where Φ is the N(0, 1) distribution function.
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Stochastic simulation – MC variance reduction

If cov(g1(X), g2(X)) < 0 then

var(Ĝn) = σ2(g1 + g2)
4n = σ2(g1) + σ2(g2) + 2 cov(g1(X), g2(X))

4n

= 2σ2(g1) + 2 cov(g1(X), g2(X))
4n

<
σ2(g1)

2n = var(G (1)
2n )

where var(G (1)
2n ) is the crude MC estimator of E [g1(X)] using 2n

simulations, which is comparable to the estimator E [g1(X)+g2(X)]
2 using n

simulations.

As stated earlier, there are many approaches to variance reduction
(importance sampling, stratified sampling, measure transform etc.) – the
interested reader is referred to [Borokov, 2014].
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Simulation of RVs

INVERSE TRANSFORMATION METHOD – CONTINUOUS RV.
For any continuous strictly monotonic distribution function

FX (x) = P(X ≤ x)

denote by F −1
X (u), for any u such that 0 < u < 1, its inverse function so

that
FX (F −1

X (u)) = u.

If U ∼ U(0, 1) then the RV

X = F −1
X (U)

has the distribution function FX .

Example (simulating an exponential RV).
An exponential RV X has PDF fX (x) = λe−λx , x ≥ 0 and λ > 0, with
distribution function

FX (x) =
∫ x

0
fX (z)dz =

∫ x

0
λe−λzdz = 1 − e−λx .
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Simulation of RVs

If U ∼ Uniform(0, 1) then 1 − U is also Uniform(0, 1). To see this note
the CF of U is

E [e izU ] =
∫ 1

0
e izudu = 1

iz e izu|10 = 1
iz (e iz − 1)

and the CF of 1 − U is

E [e iz(1−U)] = e iz
∫ 1

0
e−izudu = −e iz

iz e−izu|10 = 1
iz (e iz − 1).

Now solve FX (x) for x to obtain the inverse function

F −1
X (FX (x)) = x = − ln(1 − FX (x))

λ
.

But X = F −1
X (U) ⇒ FX (X ) = U so

F −1
X (U) = X = − log(1 − U)

λ
∼ − log(U)

λ
∼ Exp(λ).

——————————————————————————————
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Simulation of RVs

There are many other methods of generating random numbers with
specific distributions.

INVERSE TRANSFORMATION METHOD – DISCRETE RV.
If we need to simulate a r.v. X having probability mass function

P(X = xj) = pj , j = 0, 1, . . . ,

we can use the following discrete analog of the inverse transform
technique.

Let U ∼ U(0, 1) and set

X =



x1, U < p1
x2, p1 < U < p1 + p2
...

...
xj ,

∑j−1
i pi < U <

∑j
i pi

...
...

.
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Simulation of RVs

The RV X has the required distribution because

P(X = xj) = P
( j−1∑

i=1
pi < U <

j∑
i=1

pi

)
=

j∑
i=1

pi −
j−1∑
i=1

pi = pj .

BOX-MULLER METHOD FOR NORMAL RVS
If U1, U2 ∼ Uniform(0, 1) and independent then

ξ1 =
√

−2 ln(U1) cos(2πU2) ∼ N(0, 1)

ξ2 =
√

−2 ln(U1) sin(2πU2) ∼ N(0, 1)

and independent.

The interested reader is referred to [Glasserman, 2004].
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Simulation of RVs

Having a method for generating the vector

ξ = (ξ1, . . . , ξn)T ∼ N(0, In)

of independent RVs ξi ∼ N(0, 1) we may generate the normal random
vector

X = (X1, . . . , Xn)T ∼ N(m, Q)

where m ∈ Rn and Q ∈ Rn×n where u · Qu > 0 for all u ̸= 0.

From Chapter 2 we know we can do this via

X = m + HT ξ

using the Cholesky decomposition

Q = HT H

where H ∈ Rn×n is an upper triangle matrix and HT is a lower triangle
matrix.
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