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General definitions

The following diagram shows important classes of stochastic processes
(SPs) and some important connections between them.

Gaussian Stationary Markov Renewal .... Martingales ....

Gaussian-Markov → Gaussian-Markov-Stationary,Ornstein-Uhlenbeck

Compound Poisson processes → Levy processes

Continuous Markov (Diffusion processes) Jump-diffusion

Time Series
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General definitions

Definition 1 (stochastic process)
A stochastic process (SP) X (t, ω), t ∈ D and ω ∈ Ω, is a collection of
measurable RVs indexed by time t on a probability space (Ω, F , P),
where the set D is called the index set of the process.

So a stochastic process is a function of both time t and elementary event
ω, but for the most part the dependence on ω can be left implicit and we
write alternatively

Xt ≡ X (t) ≡ X (t, ω), t ∈ D.

Other notation is frequently employed to define a SP, such as

X = (Xt
)

t∈D .
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General definitions

A SP Xt , t ∈ D, can be considered a mapping

X : D × Ω → R

where R ⊆ R, i.e. some subset of the real numbers R.

The SP Xt is called
discrete-time if D is countable (e.g. the set of integers Z, set of
natural numbers N, some countable subset of R etc.)
continuous-time if D is uncountable (e.g. the set of real numbers
R, non-negative real numbers R≥0 or some interval of R etc.)
discrete-space if R is countable
continuous-space if R is uncountable.

Vector SPs can also be defined.
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General definitions

If t = t∗ ∈ D is fixed then X (t∗, ω) is a RV.

If ω = ω∗ ∈ Ω is fixed then X (t, ω∗) is a trajectory (or realisation or
path).

Definition 2 (finite-dimensional distributions FDD)
A family of finite-dimensional distributions on (Ω, F , P) is a function

FXt1 ,...,Xtn
(x1, . . . xn) = P(Xt1 ≤ x1, . . . , Xtn ≤ xn),

ti ∈ D and xi ∈ R, consistent in the sense that

lim
x1→∞

FXt1 ,...,Xtn
(x1, . . . xn) = FXt2 ,...,Xtn

(x2, . . . xn),

lim
xn→∞

FXt1 ,...,Xtn
(x1, . . . xn) = FXt1 ,...,Xtn−1

(x1, . . . xn−1).
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General definitions

Question.
From the definition above we see that given a probability space (Ω, F , P)
we can define a stochastic process Xt with family of FDDs
FXt1 ,...,Xtn

(x1, . . . xn).

What about the reverse though? Given a family of finite FDDs
FXt1 ,...,Xtn

(x1, . . . xn), can we construct a probability space (Ω, F , P) and
stochastic process Xt consistent with this family of FDDs?

The answer is “yes”, via the Kolmogorov and Caratheodory extension
theorems – see [Chung, 2001].
——————————————————————————————

Why is this important?

We can define the behaviour of a SP via a family of FDDs and from this
construct a SP with these properties that is supported by all the
machinery of a probability space.
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General definitions

Before looking at some examples we introduce some notation.

Notation.
Set the mean function

m(t) = E [Xt ]

and covariance function

Q(t, s) = cov(Xt , Xs)
= E

[
(Xt − E [Xt ])(Xs − E [Xs ])

]
= E [XtXs ] − E [Xt ]E [Xs ].

——————————————————————————————
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Gaussian processes – definitions and basic examples

Definition 3 (Gaussian process)
A stochastic process Xt , t ∈ D, is called a Gaussian process if any
random vector X = (Xt1 , . . . , Xtn )T is joint Gaussian.

Set

m = E [X ] :=
(
E [Xt1 ], . . . , E [Xtn ]

)T =


m(t1)

...
m(tn)


and

Q = cov(X , X) = E
[
(X − E [X ])(X − E [X ])T ]

=
(

cov(Xti , Xtj )
)

1≤i,j≤n =


Q(t1, t1) · · · Q(t1, tn)

...
. . .

...
Q(tn, t1) · · · Q(tn, tn)

 .
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Gaussian processes – definitions and basic examples

It follows from Chapter 2 that such a Gaussian SP has CF

E [e iu·X ] = E
[
e i

∑n
k=1

uk Xtk

]
= e im·u− 1

2 u·Qu

= exp
(

i
n∑

k=1
ukm(tk) − 1

2

n∑
k=1

n∑
j=1

ukujQ(tk , tj)
)

.

The following proposition follows.

Proposition 1 (Gaussian SP distribution)
If Xt , t ∈ D, is a Gaussian process then to determine any joint
distribution

FXt1 ,...,Xtn
(x1, . . . , xn) = P(Xt1 ≤ x1, . . . , Xtn ≤ xn)

it is sufficient to know only two functions,

m(t) = E [Xt ] and Q(t, s) = cov(Xt , Xs).
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Gaussian processes – definitions and basic examples

We also know from Chapter 2 that if u · Qu > 0 for any u ̸= 0 then
there exists the joint-PDF

fX(u) ≡ fXt1 ,...,Xtn
(u1, . . . , un)

= 1√
(2π)n det(Q)

e− 1
2 (u−m)·Q−1(u−m).

For example, if var(Xt) = Q(t, t) > 0 then

fXt (x) = 1√
2πQ(t, t)

e− (x−m(t))2
2Q(t,t) .

Example (discrete time Gaussian white noise).
Let D = {0, ∆, 2∆, . . .}, ∆ > 0 and Xt ∼ N(m, σ2) with the Xt
independent RVs. In this case

m(t) = E [Xt ] = m and Q(t, s) =
{

σ2 if t = s
0 if t ̸= s

.
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Gaussian processes – definitions and basic examples

Below is a Mathematica example for the case m = 0, σ2 = 1, ∆ = 1 and
T = 500.

SeedRandom[123];

TT = 500;

data = Table[RandomReal[NormalDistribution[]], {TT}];

ListPlot[data, PlotMarkers → {Automatic, 5}, AxesLabel → {"t", "Xt"}]
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Gaussian processes – definitions and basic examples

Example (discrete time Gaussian random walk).
Let Xt be a Gaussian white noise process. Then the process

Yt = X1 + · · · + Xt =
t∑

k=1
Xk , Y0 = 0,

is a discrete time Gaussian random walk.

To describe the distribution of this process we need

E [Yt ] = E
[ t∑

k=1
Xk

]
=

t∑
k=1

E [Xk ] = mt

and

var(Yt) = var
( t∑

k=1
Xk

)
=

t∑
k=1

var(Xk) = σ2t

so Yt ∼ N(mt, σ2t).
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Gaussian processes – definitions and basic examples

It can also be shown that the covariance
Q(t, s) = cov(Yt , Ys) = σ2 min(t, s).

Below is a Mathematica example for the case m = 0, σ2 = 1, ∆ = 1 and
T = 500.

SeedRandom[123];

TT = 500;

data = Table[RandomReal[NormalDistribution[]], {TT}];

data = Accumulate[data];

ListPlot[data, PlotMarkers → {Automatic, 5}, AxesLabel → {"t", "Yt"}]
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Gaussian processes – Brownian motion

A central object of study in this subject is a fundamentally important SP
called Brownian motion.

Definition 4 (Brownian motion)
A stochastic process Wt , t ∈ [0, ∞), is said to be a Brownian motion
(BM), or Wiener process, if Wt is a Gaussian process with

E [Wt ] = mt and Q(t, s) = σ2 min(t, s).

That is, Wt ∼ N(mt, σ2t).

When m = 0 and σ2 = 1, the process is called a standard Brownian
motion, which we denote Bt .

There are many analytical tools that have been developed in order to
work with BM.
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Gaussian processes – Brownian motion

Example (Brownian motion).
Below is a Mathematica example for a standard BM with T = 500.

SeedRandom[123];

TT = 500;

data = Table[RandomReal[NormalDistribution[]], {TT}];

data = Accumulate[data];

ListPlot[data, Joined → True, AxesLabel → {"t", "Bt"}]

100 200 300 400 500
t

-35
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-20

-15

-10

-5

Bt

Note that the best we can do with a PC is a discrete-time approximation
(in this case with linear interpolation between points).
——————————————————————————————
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Gaussian processes – Brownian motion

It’s all well and good to define mathematical objects, but can we actually
construct one?

Proposition 2 (existence of Brownian motion)
Let ξk ∼ N(0, 1), k = 0, 1, 2, ..., be independent RVs. Then the process

Xt = ξ0t√
π

+
∞∑

k=1
ξk

2 sin(kt)
k

√
π

is a standard Brownian motion for t ∈ [0, π].

The proof involves use of Fourier series, which is beyond the scope of the
subject.
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Gaussian processes – Brownian motion

The first property we establish is the distribution of increments of BM.

Proposition 3 (distribution of increments of BM)
For ∆ > 0 the increment (Wt+∆ − Wt) ∼ N(m∆, σ2∆).

Proof.
We know that Wt is Gaussian and by Definition 4

E [Wt+∆ − Wt ] = E [Wt+∆] − E [Wt ] = m(t + ∆) − mt
= m∆

with

var(Wt+∆ − Wt) = var(Wt+∆) + var(Wt) − 2 cov(Wt+∆, Wt)
= σ2(t + ∆) + σ2t − 2σ2t = σ2∆

so (Wt+∆ − Wt) ∼ N(m∆, σ2∆).
——————————————————————————————
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Gaussian processes – Brownian motion

The next property we establish is the independence of non-overlapping
increments.

Proposition 4 (independence of increments of BM)
For any disjoint intervals [t, t + ∆1] and [s, s + ∆2]

cov(Wt+∆1 − Wt , Ws+∆2 − Ws) = 0

implying their independence.

Proof.
Consider the case t + ∆1 > t > s + ∆2 > s. Then

cov(Wt+∆1 − Wt , Ws+∆2 − Ws) = cov(Wt+∆1 , Ws+∆2)
− cov(Wt+∆1 , Ws) − cov(Wt , Ws+∆2) + cov(Wt , Ws)
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Gaussian processes – Brownian motion

= σ2(
min(t + ∆1, s + ∆2) − min(t + ∆1, s) − min(t, s + ∆2)

)
+ min(t, s)

)
= σ2(

(s + ∆2) − s − (s + ∆2) + s
)

= 0.

As Wt+∆1 − Wt and Ws+∆1 − Ws have a joint Gaussian distribution, zero
covariance implies their independence (see TNC Chapter 2).
——————————————————————————————

Now we look at how BM scales.
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Gaussian processes – Brownian motion

Proposition 5 (self-similarity or scaling of BM)
If Bt is a standard BM then the process

Xt =
√

aBt/a, t ≥ 0,

is also a standard Brownian motion for any constant a > 0.

Proof.
We see that

E [Xt ] = E [
√

aBt/a] =
√

aE [Bt/a] = 0
and

cov[Xt , Xs ] = cov(
√

aBt/a,
√

aBs/a) = a cov(Bt/a, Bs/a)

= a min
( t

a ,
s
a

)
= min(t, s)

so Xt is a standard BM by Definition 4.
——————————————————————————————
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Gaussian processes – Brownian motion

For the next property we require an interim result, a theorem that we
state without proof.

Theorem 1 (Kolmogorov’s criterion)
Let Xt , t ∈ [0, T ], be a real-valued process. If there exists an α > 0 and
ε > 0 so that for any 0 ≤ u ≤ t ≤ T

E [|Xt − Xu|α] ≤ c(t − u)1+ε

for some constant c > 0, then there exists a version of Xt with continuous
sample paths (i.e. which are Hölder continuous of order h < ε/α).

Now we can show that BM has continuous trajectories.
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Gaussian processes – Brownian motion

Proposition 6 (continuity of trajectories of BM)
Brownian motion has a version with continuous (almost surely)
trajectories.

Proof.
We demonstrate this property for standard BM (it generalises to the
general case without too much difficulty ).

Note for any u < t, Bt − Bu ∼ N(0, t − u) and therefore

E [|Bt − Bu|4] = 3(t − u)2.

So we can set α = 4, c = 3 and ε = 1 in Kolmogorov’s criterion and
claim that Bt is Hölder continuous of order h < 1/4.
——————————————————————————————

So we have continuity (this is often assumed by definition), but next we
see that BM is not differentiable.
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Gaussian processes – Brownian motion

Proposition 7 (non-differentiability of trajectories of BM)
Brownian motion is not differentiable at any point.

Proof.
We demonstrate this property for standard BM (it generalises to the
general case without difficulty).

First note that by Proposition 3, (Bt+∆ − Bt) ∼ N(0, ∆) so

Bt+∆ − Bt
∆ ∼ N

(
0,

1
∆

)
.

By results in Chapter 2 this means

X =
√

∆Bt+∆ − Bt
∆ ∼ N(0, 1).
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Gaussian processes – Brownian motion

So for any ε > 0

P
(∣∣∣Bt+∆ − Bt

∆

∣∣∣ > ε
)

= P
(∣∣∣√∆Bt+∆ − Bt

∆

∣∣∣ >
√

∆ε
)

= P
(
|X | >

√
∆ε

)
= P

(
{X < −

√
∆ε} ∪ {X >

√
∆ε}

)
=

∫ −
√

∆ε

−∞
fX (x)dx +

∫ ∞

√
∆ε

fX (x)dx

→
∫ ∞

−∞
fX (x)dx = 1

as ∆ → 0.

So (Bt+∆ − Bt)/∆ does not have a limit (in probability).
——————————————————————————————
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Gaussian processes – other examples

A process that is gaining popularity in mathematical finance applications
is fractional Brownian motion.

Definition 5 (fractional Brownian motion)
A stochastic process BH

t , t ∈ [0, ∞), is said to be a fractional Brownian
motion (fBm) with Hurst exponent H ∈ (0, 1] if BH

t is a Gaussian process
with

E [BH
t ] = 0 and E

[
|BH

t − BH
s |2

]
= |t − s|2H

and BH
t ∼ N(0, t2H).

As

E
[
|BH

t − BH
s |2

]
= E

[
(BH

t )2]
+ E

[
(BH

s )2]
− 2E

[
BH

t BH
s

]
we get

Q(t, s) = E
[
BH

t BH
s

]
= 1

2(t2H + s2H − |t − s|2H).
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Gaussian processes – other examples

If
H ∈ (0, 1

2 ) then increments have negative correlation

H = 1
2 then B1/2

t is a standard BM
H ∈ ( 1

2 , 1) then increments have positive correlation.
H = 1 then B1

t = ξt where ξ ∼ N(0, 1)

To simulate continuous time Gaussian processes one may use
discretisation in time with use of (e.g.) Cholesky decomposition;
truncated Karhounen-Loev expansions
inbuilt Mathematica functions!
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Gaussian processes – other examples

Example (Fractional Brownian motion).
Below is a Mathematica example for fBMs.

TT = 1;

μ = 0; σ = 1;

fbm := FractionalBrownianMotionProcess[μ, σ, h];

Table[ListPlot[RandomFunction[fbm, {0, 1, 0.01}],

Joined → True, PlotLabel → "H = " <> ToString[h]], {h, {0.1, 0.5, 0.9}}

] // GraphicsRow
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-0.5

0.5
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0.2 0.4 0.6 0.8 1.0

-0.4
-0.2

0.2
0.4
0.6
0.8
1.0

H = 0.5

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4
H = 0.9

——————————————————————————————
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Gaussian processes – other examples

Another process used in mathematical finance applications is the
Brownian bridge.

Definition 6 (Brownian bridge)
A stochastic process Bb

t , t ∈ [0, 1], is said to be a (standard) Brownian
bridge if it is a Gaussian process with

E [Bb
t ] = 0 and Q(t, s) = cov(Bb

t , Bb
s ) = min(t, s) − ts,

i.e. Bb
t ∼ N(0, t − t2).

Note that as var(Bb
0 ) = var(Bb

1 ) = 0 we may assume that Bb
0 = Bb

1 = 0.
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Gaussian processes – other examples

Example (Standard Brownian bridge).
Below is a Mathematica example for a standard Brownian bridge.

TT = 1;

data = RandomFunction[BrownianBridgeProcess[], {0, TT, .01}];

ListLinePlotdata, AxesLabel → "t", "Bt
b"

0.2 0.4 0.6 0.8 1.0
t

-0.8

-0.6

-0.4

-0.2

0.2

Bt
b

——————————————————————————————
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Gaussian processes – other examples

It is possible to use standard BMs to construct a Brownian bridge, as the
next exercise demonstrates.

Exercise.
Let Bt ≡ B(t) be a standard BM. Show that processes

X (1)
t = Bt − tB1, t ∈ [0, 1],

and
X (2)

t = (1 − t)B
( t

1 − t

)
, t ∈ [0, 1),

are Brownian Bridges.

Solution. As class work.
——————————————————————————————
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Gaussian processes – other examples

A common process used in econometrics is the autoregressive process.

Definition 7 (Gaussian autoregressive process)
An autoregressive process of order 1 (AR(1) process) is a solution of

Xt = λXt−1 + et , t ∈ {1, 2, . . .}

where et ∼ N(0, σ2) and independent RVs and X0 may also be a
Gaussian RV independent of the et .

An autoregressive process of order p (AR(p) process) is a solution of

Xt = λ1Xt−1 + λ2Xt−2 + · · · λpXt−p + et , t ∈ {p, p + 1, . . .}.

Note by back-substitution the AR(1) process can be re-written as

Xt = λ2Xt−2 + λet−1 + et = · · · = λtX0 +
t−1∑
k=0

λket−k .
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Gaussian processes – other examples

So for the AR(1) process we have

E [Xt ] = E
[
λtX0 +

t−1∑
k=0

λket−k

]
= λtE [X0] +

t−1∑
k=0

λkE [et−k ]

= λtE [X0]

and

var(Xt) = var
(

λtX0 +
t−1∑
k=0

λket−k

)
= λ2t var(X0) +

t−1∑
k=0

λ2k var(et−k) (independence)

= λ2t var(X0) + σ2
t−1∑
k=0

λ2k .

33 / 43



Gaussian processes – other examples

Example (AR(1) process).
Below is a Mathematica example for a variety of AR(1) processes.

X0 = 0; σ = 1; TT = 100;

data = Table[RandomFunction[ARProcess[{λ}, σ], {0, TT}], {λ, {0.2, 0.5, 0.99}}];

ListPlot[data, Joined → True, PlotRange → All, AxesLabel → {"t", "Xt"},

PlotLabels → {"λ = 0.2", "λ = 0.5", "λ = 0.99"}

]

λ = 0.2

λ = 0.5

λ = 0.99

20 40 60 80 100
t

-6

-4

-2

2

4

6

8

Xt
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Gaussian processes – other examples

Exercise.
Consider the so-called ergodic AR(1) process, that is with |λ| < 1, and
assume X0 ∼ N(0, σ2

1−λ2 ), Show that

Q(t, s) = cov(Xt , Xs) = σ2

1 − λ2 λ|t−s|.

Solution. As class work.
——————————————————————————————

35 / 43



Stationary processes

An important class of SPs are those which are stationary, of which there
are two definitions.

Definition 8 (strictly stationary SPs)
A stochastic process Xt , t ∈ D, is called “strictly stationary” if for any
n ∈ N

FXt1 ,...,Xtn
(x1, . . . , xn) = FXt1+h,...,Xtn+h (x1, . . . , xn)

for any ti ∈ D and ti + h ∈ D with i ∈ {1, . . . , n}.

A weaker form of stationarity exists if the last definition is true for
n ∈ {1, 2}.

Consider case n = 1. Then

FXt (x) = FXt+h (x)

for any h and so FXt (x) = P(Xt ≤ x) does not depend on t.
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Stationary processes

Hence, in particular, for some constant c

E [Xt ] = E [Xt+h] = c.

Now consider case n = 2. Then

FXs ,Xt (x1, x2) = FXs+h,Xt+h (x1, x2) = FX0,Xt−s (x1, x2)

if h = −s.

Then

Q(s, t) = cov(Xs , Xt) =
∫ ∞

−∞

∫ ∞

−∞

(
(x1 − E [Xs ])(x2 − E [Xt ])

)
dFXs ,Xt (x1, x2)

=
∫ ∞

−∞

∫ ∞

−∞

(
(x1 − c)(x2 − c)

)
dFX0,Xt−s (x1, x2) =: q(t − s)

is a function of t − s only.
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Stationary processes

These results drive the second definition of stationarity.

Definition 9 (weakly stationary SPs)
A stochastic process Xt , t ∈ D, is called “weakly stationary” if

E [Xt ] = c and cov(Xt , Xt+h) = q(h)

where c is a constant.

Obviously, any strictly stationary process is weakly stationary (if, of
course, E [X 2

t ] < ∞).

Example.
Let

Xt = ξ sin(t) + η cos(t), t ≥ 0,

where ξ and η are uncorrelated RVs with
E [ξ] = E [η] = 0 and E [ξ2] = E [η2] = σ2.
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Stationary processes

Checking the conditions for weak stationarity we see

E [Xt ] = E [ξ sin(t) + η cos(t)] = sin(t)E [ξ] + cos(t)E [η] = 0

and

cov(Xs , Xt) = cov
(
ξ sin(s) + η cos(s), ξ sin(t) + η cos(t)

)
= sin(s) sin(t) cov(ξ, ξ) + sin(s) cos(t) cov(ξ, η)

+ cos(s) sin(t) cov(η, ξ) + cos(s) cos(t) cov(η, η)
= sin(s) sin(t) cov(ξ, ξ) + 0 + 0 + cos(s) cos(t) cov(η, η)
(independence)
= σ2(sin(s) sin(t) + cos(s) cos(t))

=
{

σ2 cos(t − s), s ≤ t
σ2 cos(s − t), t < s

= σ2 cos(|t − s|).
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Stationary processes

So Xt is weakly stationary (but not necessarily strictly stationary).
——————————————————————————————

However, for Gaussian stochastic processes we have the following result.

Proposition 8 (weakly stationary Gaussian SPs are strictly stationary)
Any weakly stationary Gaussian process Xt is a strictly stationary process.

Proof.
We need only to show that the random vectors

X = (Xt1 , . . . , Xtn )T

and
Y = (Xt1+h, . . . , Xtn+h)T

have the same characteristic function for any ti , ti + h ∈ D.
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Stationary processes

But the CF of a Gaussian process is completely described by mean and
covariance.

Through weak stationarity we know for any t, t + h ∈ D

E [Xt ] = E [Xt+h] = c

and due to the property Q(s, t) = q(t − s) for any s, t, s + h, t + h ∈ D

cov(Xs , Xt) = cov(Xs+h, Xt+h).

Therefore

E [X ] = E [Y ] and cov(X , X) = cov(Y , Y )

showing X and Y have the same CF and thereby distribution functions.
——————————————————————————————
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