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Definition and general properties

Definition 1 (Markov process)
A SP Xt , t ∈ D, is a Markov process if for each

t1 ≤ t2 ≤ . . . ≤ tn ≤ t < t + s

the conditional probability

P(Xt+s ≤ y |Xt1 = x1, . . . , Xtn = xn, Xt = x) = P(Xt+s ≤ y |Xt = x).

If the distribution P(Xt+s ≤ y |Xt = x) is independent of t, then the
Markov processes Xt is said to have homogeneous transition probabilities.

Markov processes may be discrete-time or continuous-time processes.

They may also be discrete-space or continuous-space processes.
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Definition and general properties

Markov property

P(“future” | “past and present”) = P(“future” | “present”)

Remark.
In terms of conditional characteristic functions, the Markov property
means that for each

t1 ≤ t2 ≤ . . . ≤ tn ≤ t < t + s

and u ∈ R

E [e iuXt+s |Xt1 , . . . , Xtn , Xt ] = E [e iuXt+s |Xt ]

reflecting the one-to-one correspondence between distributions and CFs.
——————————————————————————————
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Definition and general properties

A discrete-time Markov process can be written as

Xt = gt−1(Xt−1, Yt), t = 1, 2, . . . ,

where the function gt(x , y) is non-random and X0, Y1, Y2, ... are
independent RVs.

Examples.
The AR(1) process

Xt = λXt−1 + et

is Markov but AR(p) processes with p = 2, 3, . . . are not.

However, we can convert an AR(p) process into a p-dimensional Markov
process.

For example, consider the AR(2) process

Xt = λ1Xt−1 + λ2Xt−2 + et

where et are independent RVs and λ2 ̸= 0, which obviously is not Markov.
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Definition and general properties

However, the 2-dimensional process

Zt =
(

Xt
Xt−1

)
=

(
λ1Xt−1 + λ2Xt−2 + et

Xt−1

)
=

(
λ1 λ2
1 0

) (
Xt−1
Xt−2

)
+

(
et
0

)
=

(
λ1 λ2
1 0

)
Zt−1 +

(
et
0

)
is a 2-dimensional Markov process.

Other examples include white noise, random walks, Brownian motion
(BM), geometric Brownian motion (gBM) etc., all of which have
homogeneous transition probabilities.
——————————————————————————————
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Gaussian Markov processes

Many of the Gaussian processes considered in Chapter 4 are Markov
processes, for which many useful results are known.

The first presented here provides a practical means for checking whether
a Gaussian process is Markov.

Theorem 1 (Gaussian-Markov criteria)
Let Xt t ∈ D, be a Gaussian process with covariance function Q(t, s).
Then Xt is a Markov process i.f.f. for any t1 < t2 < t3, ti ∈ D,

Q(t1, t2)Q(t2, t3) = Q(t1, t3)Q(t2, t2) (1)

or equivalently
E [Xt3 |Xt1 , Xt2 ] = E [Xt3 |Xt2 ] (2)
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Gaussian Markov processes

Proof.
We aim to show that that Markovian =⇒ (2) =⇒ (1) =⇒ Markovian
under the assumption that var(Xt , Xt) = Q(t, t) > 0 for all t.

Proof that Markovian =⇒ (2) =⇒ (1).
Note that

E [Xt3 |Xt1 , Xt2 ] =
∫ ∞

−∞
xdFXt3 |Xt1 ,Xt2

(x)

=
∫ ∞

−∞
xdFXt3 |Xt2

(x) (Makov property)

= E [Xt3 |Xt2 ]

which is (2).

By Part 2 of TNC (see Chapter 2) we know that

Xt3 − E [Xt3 |Xt1 , Xt2 ] and (Xt1 , Xt2)T

are independent.
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Gaussian Markov processes

It follows from (2) that

Xt3 − E [Xt3 |Xt2 ] and (Xt1 , Xt2)T

are independent so

Xt3 − E [Xt3 |Xt2 ] and Xt1

must also be independent giving us

cov(Xt3 − E [Xt3 |Xt2 ], Xt1) = 0

or more conveniently

Q(t1, t3) = cov(Xt1 , Xt3) = cov(Xt1 , E [Xt3 |Xt2 ])

= cov
(

Xt1 , E [Xt3 ] + Q(t2, t3)
Q(t2, t2) (Xt2 − E [Xt2 ])

)
(Part 3 TNC)

= cov(Xt1 , Xt2)
Q(t2, t3)
Q(t2, t2) = Q(t1, t2)Q(t2, t3)

Q(t2, t2)
which is (1).
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Gaussian Markov processes

Proof that (1) =⇒ Markovian.
The first part of this requires showing that

Xt+s − E [Xt+s |Xt ] and (Xt1 , . . . , Xtn )T

are independent.

To do so note that for t > t1 and s > 0

cov(Xt+s − E [Xt+s |Xt ], Xt1) = cov(Xt+s , Xt1)− cov(E [Xt+s |Xt ], Xt1)

= Q(t + s, t1)− cov
(

E [Xt+s ] + Q(t + s, t)
Q(t, t) (Xt − E [Xt ]), Xt1

)
(Part 3 TNC)

= Q(t + s, t1)− Q(t + s, t)
Q(t, t) Q(t, t1) = 0

by (1) which by Part 1 TNC shows that

Xt+s − E [Xt+s |Xt ] and Xt1

are independent.
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Gaussian Markov processes

Repeating this procedure (with suitable modification) we find

cov(Xt+s − E [Xt+s |Xt ], Xti ) = 0

for i ∈ {1, . . . , n} giving us the independence of

Xt+s − E [Xt+s |Xt ] and (Xt1 , . . . , Xtn )T

as required. Then

E [e iuXt+s |Xt1 , . . . , Xtn , Xt ]

= E
[

e iuE [Xt+s |Xt ]

e iuE [Xt+s |Xt ]
e iuXt+s |Xt1 , . . . , Xtn , Xt

]
= e iuE [Xt+s |Xt ]E [e iu(Xt+s −E [Xt+s |Xt ])|Xt1 , . . . , Xtn , Xt ]
= e iuE [Xt+s |Xt ]E [e iu(Xt+s −E [Xt+s |Xt ])|Xt ]
= e iuE [Xt+s |Xt ]e−iuE [Xt+s |Xt ]E [e iuXt+s |Xt ]
= E [e iuXt+s |Xt ].
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Gaussian Markov processes

By the one-to-one correspondence of CFs and distributions this can be
restated as the Markov property

P(Xt+s ≤ y |Xt1 = x1, . . . , Xtn = xn, Xt = x) = P(Xt+s ≤ y |Xt = x).

——————————————————————————————

Another important result provides the form of the covariance function for
continuous, stationary Gaussian-Markov processes.

Theorem 2 (continuous stationary Gaussian-Markov covariance function)
Let Xt , t ∈ R, be a continuous, stationary Gaussian-Markov process with
covariance function Q(s, t) = q(t − s). Then

Q(s, t) = q(t − s) = σ2e−α|t−s|, σ ≥ 0, α ≥ 0,

where σ2 = var(Xt).
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Gaussian Markov processes

Proof.
Assume var(Xt) = Q(t, t) = q(0) > 0 and note by stationarity

f (u) := q(u)
q(0) = cov(Xt , Xt+u)√

var(Xt)
√

var(Xt+u)
= corr(Xt , Xt+u)

so that
|f (u)| ≤ 1

and further by stationarity

f (u) = corr(Xt , Xt+u) = corr(Xt , Xt−u) = f (−u).

Now let u = t2 − t1 and v = t3 − t2 and observe that

Q(t1, t2)Q(t2, t3) = Q(t1, t3)Q(t2, t2)

can be re-written as

q(u)q(v) = q(u + v)q(0)
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Gaussian Markov processes

or

q(u)
q(0)

q(v)
q(0) = q(u + v)

q(0)

which is the functional equation

f (u)f (v) = f (u + v)

with solution f (u) = e−αu, unique among continuous functions.

But f (u) = f (−u) so
f (u) = e−α|u|

where α ≥ 0 further restricts 0 < f (u) ≤ 1.

Then

Q(s, t) = q(t − s) = q(0)f (t − s) = σ2e−α|t−s|.

——————————————————————————————
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Gaussian Markov processes

Exercise.
Show that a Brownian bridge Bb

t , t ∈ [0, 1], is a Markov process.

Solution. As class work.
——————————————————————————————
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C-K eqns – continuous Markov process

Let Xt be a Markov process (discrete or continuous-time).

If the values Xt takes is an uncountable set (i.e. Xt is continuous-space
process) and Xt has a density (i.e. Xt is absolutely continuous), then the
Markov property

P(Xt+s ≤ y |Xt1 = x1, . . . , Xtn = xn, Xt = x) = P(Xt+s ≤ y |Xt = x)

for
t1 ≤ t2 ≤ . . . ≤ tn ≤ t < t + s

is equivalent to

fXt+s (y |Xt1 = x1, . . . , Xtn = xn, Xt = x) = fXt+s (y |Xt = x)

where fXt+s is conditional or transition density.
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C-K eqns – continuous Markov process

Theorem 3 (C-K equation for continuous Markov process)
Let Xt be a continuous Markov process (discrete or continuous-time)
with transition density function f (y , u|x , t).

Then
1 the n-dimensional density

f (x1, t1; . . . ; xn, tn) = f (x1, t1)
n∏

i=2
f (xi , ti |xi−1, ti−1)

2 the Chapman-Kolmogorov equation

f (x3, t3|x1, t1) =
∫ ∞

−∞
f (x2, t2|x1, t1)f (x3, t3|x2, t2)dx2

holds for any t1 < t2 < t3.
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C-K eqns – discrete Markov process (Markov chain)

Let Xt be a Markov process (discrete or continuous-time).

If the values Xt takes is a countable set (i.e. Xt is discrete-space process)
then we call this a Markov chain, which satisfies the Markov property

P(Xt+s ≤ y |Xt1 = x1, . . . , Xtn = xn, Xt = x) = P(Xt+s ≤ y |Xt = x)

for
t1 ≤ t2 ≤ . . . ≤ tn ≤ t < t + s.

We shall obtain the equations for the transition probabilities of Markov
chains

p(y , t|x , s) := P(Xt = y |Xs = x)

for both discrete and continuous-times cases in later sections.
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C-K eqns – discrete Markov process (Markov chain)

Theorem 4 (C-K equation for Markov chain)
Let Xt be a Markov chain (discrete or continuous-time) with transition
probabilities p(y , u|x , t).

Then
1 the n-dimensional distribution

P(Xt1 = x1, . . . , Xtn = xn) = P(Xt1 = x1)
n∏

i=2
p(xi , ti |xi−1, ti−1)

2 the Chapman-Kolmogorov equation

p(x3, t3|x1, t1) =
∑

x2

p(x2, t2|x1, t1)p(x3, t3|x2, t2)

holds for any t1 < t2 < t3.
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C-K eqns – homogenous Markov chain

A Markov chain is called “homogenous” if the transition probabilities
p(y , u|x , t) don’t depend on t and u but rather on u − t.

Set
pij(s) := P(Xt+s = xj |Xt = xi).

Then the Chapman-Kolmogorov equation becomes

pij(s + u) =
∑

k
pik(s)pkj(u) (3)

for any s ≥ 0 and u ≥ 0.
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C-K eqns – homogenous Markov chain

To see this, set s = t2 − t1 and u = t3 − t2 so s + u = t3 − t1 into the
Chapman-Kolmogorov equation from Theorem 4 so

pij(s + u) = p(xj , t3|xi , t1) =
∑
xk

p(xk , t2|xi , t1)p(xj , t3|xk , t2)

=
∑

k
pik(s)pkj(u).

It is often convenient to collect the transition probabilities together into
the “transition probability matrix”

P(s) =
(
pij(s)

)
1≤i,j≤n =


p11(s) p12(s) · · · p1n(s)
p21(s) p22(s) · · · p2n(s)

...
...

. . .
...

pn1(s) pn2(s) · · · pnn(s)

 (4)

where n is the dimension of the state space.
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C-K eqns – homogenous Markov chain

Note that all rows of P(s) sum to one, i.e.
n∑

j=1
pij(s) = 1 for all i ∈ {1, . . . , n},

as Xt has to move to some state.

We also need the probability of the Markov chain being in particular
states, so set

pi(t) := P(Xt = xi) (5)

and the state probability vector

p(t) =
(
pi(t)

)
1≤i≤n =


p1(t)
p2(t)

...
pn(t)


where

∑n
i=1 pi(t) = 1 as Xt has to be in some state.
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C-K eqns – homogenous Markov chain

The following proposition brings these ideas together in convenient
matrix form.

Proposition 1 (homogenous Markov chain probabilities)
Let Xt be a homogenous Markov chain (discrete or continuous-time)
taking n states with transition probability matrix P(s) given by (4) and
state probability vector p(t) given by (5).

Then the Chapman-Kolmogorov equation can be written in matrix
notation as

P(s + u) = P(s)P(u) (6)

and state probability vector calculated as

p(t + s) = PT (s)p(t). (7)
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C-K eqns – homogenous Markov chain

Proof.
It is obvious that (6) follows from (3) and (4).

To see that (7) holds, we consider the case n = 2 and note that

PT (s)p(t) =
(

p11(s) p21(s)
p12(s) p22(s)

) (
p1(t)
p2(t)

)
=

(
p11(s)p1(t) + p21(s)p2(t)
p12(s)p1(t) + p22(s)p2(t)

)
=

(
p1(t + s)
p2(t + s)

)
(total law of probability – see Chapter 1)
= p(t + s)

which generalises to the case n = 3, 4, . . . without difficulty.
——————————————————————————————
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Discrete-time homogenous Markov chains

In this section we consider a discrete-time, homogeneous Markov chain
Xt with n states and t ∈ {0, 1, 2, . . .}.

First note from the Chapman-Kolmogorov equation (6) of Proposition 1
that the s-step transition probability matrix

P(s) = P(1)P(s − 1) =
(
P(1)

)2P(s − 2) = · · · =
(
P(1)

)s

= Ps

where P := P(1) is the 1-step transition probability matrix.

So the state probability vector

p(t + s) = (PT )sp(t) =⇒ p(t) = (PT )tp(0)

or in scalar form

pj(t + s) =
n∑

i=1
pi(t)pij(s) =⇒ pj(t) =

n∑
i=1

pi(0)pij(t).
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Discrete-time homogenous Markov chains

Example (a weather model).
Let the Markov chain Xt be a weather model with n = 2 states

1 x1 = 1 (rain)
2 x2 = 2 (no rain)

with 1-step transition probability matrix

P = (pij) =
(

α 1− α
β 1− β

)
.

——————————————————————————————

Sometimes it makes more sense to number the states of the Markov
chain from 0 to n, as the next example shows.

Example (a gambling model).
Let the Markov chain Xt be the fortune of a gambler with states (wealth)

xi = i for i ∈ {0, 1, . . . n}

who quits when either Xt = x0 = 0 or Xt = xn = n.
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Discrete-time homogenous Markov chains

If the gambler gambles at each time step with probability of winning a
dollar at each time step

pi,i+1(1) = p

and of losing a dollar at each time step

pi,i−1(1) = 1− p,

then the 1-step transition probability matrix for the case n = 3 is

P =


1 0 0 0

1− p 0 p 0
0 1− p 0 p
0 0 0 1


where Xt = x0 = 0 and Xt = xn = n are absorbing states.
——————————————————————————————
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Discrete-time homogenous Markov chains

LIMITING PROBABILITIES.
Theorem 5 (ergodic discrete-time Markov chain)
A homogenous Markov chain Xt is called ergodic if limt→∞ p(t) exists
and this limit does not depend on the initial distribution p(0).

If a Markov chain is ergodic, then for all initial states i

lim
s→∞

pij(s) = lim
t→∞

pj(t) = πj or lim
t→∞

p(t) = π

so that

lim
t→∞

p(t + 1) = lim
t→∞

(
PT p(t)

)
becomes

π = PT π subject to
n∑

j=1
πj = 1, (8)

where π is the stationary distribution of Xt .
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Discrete-time homogenous Markov chains

Note that if Xt starts from the stationary distribution, i.e p(0) = π, then

p(1) = PT p(0) = PT π = π

and so

p(t) =
(
PT )tp(0)

=
(
PT )t−1PT p(0) =

(
PT )t−1

π

=
(
PT )t−2PT π =

(
PT )t−2

π

=
(
PT )t−3PT π =

(
PT )t−3

π

...
= PT π = π

for all t ≥ 0.
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Discrete-time homogenous Markov chains

Example (a weather model) cont.
Recall the weather model example with 1-step transition probability
matrix

P = (pij) =
(

α 1− α
β 1− β

)
.

The stationary distribution π = (π1, π2)T is the solution of the problem

π = PT π,

2∑
i=1

πi = 1 and π1, π2 ≥ 0.

Note that this is an eigenvector problem corresponding to an eigenvalue
of one, but with the added condition that the eigenvector components
must be non-negative and sum to one as they are probabilities.
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Discrete-time homogenous Markov chains

In scalar form we solve

π1 = απ1 + βπ2

π2 = (1− α)π1 + (1− β)π2

1 = π1 + π2

which gives the unique stationary distribution

π1 = β

1− α + β
and π2 = 1− α

1− α + β

so long as
1− α + β > 0

which is when α ̸= 1 and β ̸= 0.
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Discrete-time homogenous Markov chains

The case α = 1 and β = 0 is considered separately.

If α = 1 and β = 0 then

P =
(

1 0
0 1

)
and in scalar form we solve

π1 = π1

π2 = π2

1 = π1 + π2

and, hence, any vector (π1, π2)T with π1 + π2 = 1, π1, π2 ≥ 0, is a
stationary distribution as

PT π = π

irrespective of π.
——————————————————————————————

We should not always expect the stationary distribution to be unique, but
the following theorem tells us when we may.
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Discrete-time homogenous Markov chains

Proposition 2 (ergodicity and stationarity)
If a Markov chain is ergodic then the stationary distribution is unique.

Proof.
Assume there exist two different stationary distributions of a Markov
chain, say π and π′.

If we take p(0) = π, then p(t) = π for all t and so limt→∞ p(t) = π.

By the same reasoning, if we take p(0) = π′, then limt→∞ p(t) = π′.

But this contradicts the definition of ergodicity, which states that this
limit should not depend on p(0).
——————————————————————————————
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Discrete-time homogenous Markov chains

Example.
Consider a Markov chain with 1-step transition probability martrix

P =
(

0 1
1 0

)
which has unique stationary distribution πT = (π1, π2)T = ( 1

2 , 1
2 )T .

But if pT (0) = (1, 0)T then

p(1) = PT p(0) =
(

0 1
1 0

) (
1
0

)
=

(
0
1

)
,

p(2) = PT p(1) =
(

0 1
1 0

) (
0
1

)
=

(
1
0

)
,

p(3) = PT p(2) =
(

0 1
1 0

) (
1
0

)
=

(
0
1

)
etc., and we see that the limit does not exist contradicting ergodicity.
——————————————————————————————
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Discrete-time homogenous Markov chains

The next theorem provides simple but sufficient conditions for ergodicity.

Theorem 6 (sufficient condition for ergodicity)
Let Xt be a Markov chain taking a finite number of states. If there exists
s0 such that

min
i,j≥1

pij(s0) > 0,

then Xt is ergodic with unique stationary distribution π and for all i and j

lim
s→∞

pij(s) = lim
t→∞

pj(t) = πj > 0.

Also, there exists λ > 0 and c > 0 such that for all t and j

|pij(s)− πj | < ce−λs .

Proof.
Rather technical so omitted.
——————————————————————————————
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Discrete-time homogenous Markov chains

The next theorem provides another means for checking if a Markov chain
is ergodic.

Theorem 7 (sufficient condition for ergodicity)
The Markov chain is ergodic when

1 all states communicate and the chain is aperiodic (see Definition 2
page 46).

2 the Markov chain is positively recurrent; i.e., starting in any state
the mean time to return to that state is finite.

Proof.
Omitted.
——————————————————————————————
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Discrete-time homogenous Markov chains

Example.
Let Xt , t ∈ {0, 1, . . .}, be a Markov chain with states {1, 2, 3} and 1-step
transition probability matrix

P =

0 1
2

1
2

1 0 0
1
6

1
3

1
2

 .

Then the 100-step transition probability matrix is

P(100) = P100 =

0.352941 0.294118 0.352941
0.352941 0.294118 0.352941
0.352941 0.294118 0.352941


and stationary distribution

π =

6/17
5/17
6/17

 =

0.352941
0.294118
0.352941
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Discrete-time homogenous Markov chains

The Mathematica example below shows how to calculate P100.
PP = {{0, 1/ 2, 1/ 2}, {1, 0, 0}, {1/ 6, 1/ 3, 1/ 2}};

MatrixPower[PP, 100] // N // MatrixForm

0.352941 0.294118 0.352941
0.352941 0.294118 0.352941
0.352941 0.294118 0.352941

The Mathematica example below shows how to calculate π.
PP = {{0, 1/ 2, 1/ 2}, {1, 0, 0}, {1/ 6, 1/ 3, 1/ 2}};

eigensys = Eigensystem[Transpose[PP]];

eigensys[[2, 1]]/ Total[eigensys[[2, 1]]] // N // MatrixForm

0.352941
0.294118
0.352941

The last line re-weights the eigenvectors so they are non-negative and
sum to one.
——————————————————————————————
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Discrete-time homogenous Markov chains

CLASSIFICATION OF STATES.
State xi is said to be absorbing if once entered it is never left, i.e.
pii(s) = 1 and pij(s) = 0, i ̸= j , for all s > 0.

State xj is said to be accessible from state xi if pij(s) > 0 for some
s > 0.

Two states xi and xj that are accessible to each other are said to
communicate and we write i ←→ j .

Obviously, if i ←→ j and j ←→ k then i ←→ k.

Two states that communicate are said to be the same class.

The Markov chain is said to be irreducible if there is only one class, that
is all states communicate with each other.
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Discrete-time homogenous Markov chains

For any state xi we let fi denote the probability that, starting in state xi ,
the process will reenter state xi

State xi is said to be recurrent if fi = 1 and transient if fi < 1.

Denote

ξi =
∞∑

t=0
I(Xt = xi),

I the indicator function, as the number of time periods that the process is
in state xi .

If state xi is transient then, starting in xi , the RV ξi has the geometric
distribution; i.e.

P(ξi = k|X0 = xi) = f k−1
i (1− fi), k = 1, 2, . . . ,

and therefore
E [ξi |X0 = xi ] = 1

1− fi
<∞.
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Discrete-time homogenous Markov chains

If state xi is recurrent then, starting in xi , the process Xt visits the state
xi infinitely many times and therefore

E [ξi |X0 = xi ] =∞.

The following results assist in identifying recurrent states.

Proposition 3 (recurrent communicating states)
If state xi of a Markov chain is recurrent and i ←→ j , then state xj is
recurrent.

Proposition 4 (recurrent states in irreducible Markov chain)
All states in a finite-state irreducible Markov chain are recurrent.
Proofs.
Omitted.
——————————————————————————————
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Discrete-time homogenous Markov chains

Example.
Consider a Markov chain consisting of four states {1,2,3,4} with the
1-step transition probability matrix

P =


1/2 1/2 0 0
1/2 1/2 0 0
1/4 1/4 1/4 1/4
0 0 0 1


The classes of this Markov chain are {1, 2}, {3} and {4}.

State 4 is an absorbing state.
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Discrete-time homogenous Markov chains

We can use Mathematica to plot a network diagram of the Markov chain,
which can assist in classifying states and identifying classes.

PP = {{1/ 2, 1/ 2, 0, 0}, {1/ 2, 1/ 2, 0, 0}, {1/ 4, 1/ 4, 1/ 4, 1/ 4}, {0, 0, 0, 1}};

Graph[DiscreteMarkovProcess[4, PP]]

1

2

3 4

We see that states 1, 2 and 3 are transient states and state 4 is recurrent.

The class {3} is transient and classes {1, 2} and {4} are recurrent.
——————————————————————————————

43 / 49



Discrete-time homogenous Markov chains

Example.
Consider a Markov chain consisting of five states {1,2,3,4,5} with the
1-step transition probability matrix

P =


1/2 1/2 0 0 0
1/2 1/2 0 0 0
0 0 1/2 1/2 0
0 0 1/2 1/2 0

1/4 1/4 0 0 1/2


The classes of this Markov chain are {1, 2}, {3, 4} and {5}.
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Discrete-time homogenous Markov chains

Using Mathematica to visualise the Markov chan state transitions.
PP = {{1/ 2, 1/ 2, 0, 0, 0}, {1/ 2, 1/ 2, 0, 0, 0}, {0, 0, 1/ 2, 1/ 2, 0}, {0, 0, 1/ 2, 1/ 2, 0},

{1/ 4, 1/ 4, 0, 0, 1/ 2}};

Graph[DiscreteMarkovProcess[5, PP]]

All states are transient.

The class {5} is transient and classes {1, 2} and {3, 4} are recurrent.
——————————————————————————————
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Discrete-time homogenous Markov chains

To wrap up this section we need the concept of the period of states of a
Markov chain.

Definition 2 (period of Markov chain state)
State xi is said to have period di if pii(s) = 0 whenever s is not divisible
by di .

The period of state xi , di , is the greatest common divisor of s with this
property.

A state xi with period di = 1 is said to be aperiodic.

Proposition 5 (period as class property)
Periodicity is a class property, i.e. if i ←→ j and state xi has period di ,
then state j also has period dj = di .
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Discrete-time homogenous Markov chains

Example.
Consider the Markov chain with 1-step transition probability matrix

P(1) =

0 0 1
1 0 0
0 1 0

 .

Let’s use Mathematica for the calculations.
PP = {{0, 0, 1}, {1, 0, 0}, {0, 1, 0}};

Table[MatrixPower[PP, n] // MatrixForm, {n, {1, 2, 3, 4, 5, 6}}]



0 0 1
1 0 0
0 1 0

,
0 1 0
0 0 1
1 0 0

,
1 0 0
0 1 0
0 0 1

,
0 0 1
1 0 0
0 1 0

,
0 1 0
0 0 1
1 0 0

,
1 0 0
0 1 0
0 0 1



Then di = 3 for i ∈ {1, 2, 3}.
——————————————————————————————
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Discrete-time homogenous Markov chains

Theorem 8 (irreducible, aperiodic finite-state Markov chain)
For an irreducible aperiodic finite-state Markov chain,

lim
t→∞

p(t) = π = (π1, . . . , πn)T

exists, is independent of initial distribution (Markov chain is ergodic) and
can be found by solving (8).

Also, for any initial distribution,

lim
s→∞

pij(s) = πj

exists and is independent of i .
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