Stochastic Processes and Financial Mathematics (37363)

Chapter 6

Continuous-time Markov chains, compound Poisson processes

Alex Novikov and Scott Alexander

School of Mathematical and Physical Sciences, UTS

Autumn 2025

Topics:

- Continuous-time homogenous Markov chains
 - Birth and death process
 - Kolmogorov equations
 - Limiting probabilities
 - Classification of states
- Compound Poisson processes
 - Processes with independent increments
 - Poisson process
 - Compound Poisson process

In this section we consider a continuous-time, homogeneous Markov chain X_t with n states and $t \in [0, \infty)$.

Many results from the discrete-time case carry over to the continuous-time case, such as ergodicity and classification of states.

Most importantly, recall from Chapter 5 the Chapman-Kolmogorov equation

$$\boldsymbol{P}(s+u) = \boldsymbol{P}(s)\boldsymbol{P}(u), \quad s, u \ge 0, \tag{1}$$

and state probability vector calculated as

$$\boldsymbol{p}(t+s) = \boldsymbol{P}^{T}(s)\boldsymbol{p}(t), \quad t,s \ge 0,$$
(2)

which are valid for both the discrete and continuous-time cases.

How can we find P(s) and simulate X_t ?

The fundamental difference between discrete and continuous-time Markov chains is that discrete-time chains are not defined between jumps (or state changes) but continuous-time chains are.

Let $X_t = x_i$ and denote the waiting (sojourn) time of state x_i as

$$T_i := \min(s > 0 | X_{t+s} \neq x_i).$$

The waiting times themselves are RVs.

Theorem 1 (waiting times)

Let X_t be a homogeneous, continuous-time Markov chain.

Then all waiting times T_i are independent and have an exponential distribution with some parameter $\nu_i \ge 0$, i.e. $T_i \sim \text{Exp}(\nu_i)$.

The ν_i are called the "intensities" or "instantaneous rates" of the chain.

Proof. By definition of T_i we have

$$\{T_i > s\} = \{X_{t+u} = x_i, 0 \le u \le s\}$$

SO

$$P(T_i > v + s | T_i > v) = P(X_{t+u} = x_i, 0 \le u \le v + s | X_{t+u} = x_i, 0 \le u \le v)$$

= $P(X_{t+u} = x_i, v \le u \le v + s | X_{t+u} = x_i, 0 \le u \le v)$
(because of condition)
= $P(X_{t+u} = x_i, v \le u \le v + s | X_{t+v} = x_i)$ (Markov property)
= $P(X_{t+u} = x_i, 0 \le u \le s | X_t = x_i)$ (homogeneity)
= $P(X_{t+u} = x_i, 0 \le u \le s)$
= $P(T_i > s)$.

That is, we have the memoryless property

$$P(T_i > v + s | T_i > v) = P(T_i > s),$$

a property only possessed by the exponential distribution (not proved).

So

$$egin{aligned} & \mathcal{P}(\mathcal{T}_i > s) = 1 - \mathcal{P}(\mathcal{T}_i \leq s) \ &= 1 - (1 - e^{-
u_i s}) \ & (ext{CDF of } \mathcal{T}_i \sim ext{Exp}(
u_i)) \ &= e^{-
u_i s} \end{aligned}$$

for $0 \leq \nu_1 < \infty$.

In order to obtain the transition probability matrix

$$\boldsymbol{P}(s) = (p_{ij}(s))_{1 \le i,j \le n} = \begin{pmatrix} p_{11}(s) & p_{12}(s) & \cdots & p_{1n}(s) \\ p_{21}(s) & p_{22}(s) & \cdots & p_{2n}(s) \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1}(s) & p_{n2}(s) & \cdots & p_{nn}(s) \end{pmatrix}$$
(3)

where

$$p_{ij}(s) = P(X_{t+s} = x_j | X_t = x_i), \ i, j \in \{1, \ldots, n\},$$

we first consider the jump probability matrix

$$\boldsymbol{P}^{\text{jump}} = (p_{ij})_{1 \le i,j \le n} = \begin{pmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{pmatrix}$$
(4)

where

$$p_{ij} = P(X = x_j \text{ after jumping from } X = x_i), i, j \in \{1, \dots, n\},$$

The jump probability matrix P^{jump} contains the probabilities that apply when a jump occurs, and can be considered analogous to the 1-step transition probability matrix of a discrete-time chain. Note this matrix does not depend *s*.

The transition probability matrix P(s) incorporates the information from P^{jump} but also takes into account the (exponential) waiting times between jumps. Note that this matrix does depend on s.

Of course, the usual properties

$$0 \leq p_{ij}(s), p_{ij} \leq 1, \quad \sum_j p_{ij}(s) = 1 \quad ext{and} \quad \sum_j p_{ij} = 1$$

apply.

If state x_i is an **absorbing state**, then $p_{ii} = 1$, $p_{ij} = 0$ for $i \neq j$ and $\nu_i = 0$.

If state x_i is **not** an absorbing state, then $p_{ii} = 0$ and $\nu_i > 0$.

Define the instantaneous transition rate

$$a_{ij} := \nu_i p_{ij}$$
 for $i \neq j$ and $a_{ii} = -\nu_i$.

For non-absorbing states x_i

$$\sum_{j
eq i} \mathsf{a}_{ij} = \sum_{j
eq i}
u_i \mathsf{p}_{ij} =
u_i \sum_{j
eq i} \mathsf{p}_{ij} =
u_i$$

and

$$p_{ij} = rac{a_{ij}}{
u_i} = rac{a_{ij}}{\sum_{j
eq i} a_{ij}}, \ \
u_i
eq 0.$$

We also see

$$\sum_{j} a_{ij} = \sum_{j \neq i} a_{ij} + a_{ii} = \nu_i - \nu_i = 0$$

So, if we are given a_{ij} we can find ν_i and p_{ij} (or vice versa).

We collect this information together into the **generator matrix** or **intensity matrix**

$$\mathbf{A} = (a_{ij})_{1 \le i,j \le n} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$
$$= \begin{pmatrix} -\nu_1 & \nu_1 p_{12} & \cdots & \nu_1 p_{1n} \\ \nu_2 p_{21} & -\nu_2 & \cdots & \nu_2 p_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \nu_n p_{n1} & \nu_n p_{n2} & \cdots & -\nu_n \end{pmatrix}.$$
(5)

For **absorbing states** x_i set $\nu_i = 0$.

Example (credit rating).

Let the possible ratings (states) be $x_1 = AA$, $x_2 = B$, $x_3 = C$, $x_4 = D$ (default) with generator matrix

$$\boldsymbol{A} = \begin{pmatrix} -0.06 & 0.03 & 0.02 & 0.01 \\ 0.1 & -0.4 & 0.2 & 0.1 \\ 0.2 & 0.4 & -1.0 & 0.4 \\ 0.0 & 0.0 & 0.0 & 0.0 \end{pmatrix}$$

with the rates (intensities) given per year.

Noting that state $x_4 = D$ is absorbing, it follows that

$$\boldsymbol{P}^{\text{jump}} = \begin{pmatrix} 0 & \frac{a_{12}}{\nu_1} & \frac{a_{13}}{\nu_1} & \frac{a_{14}}{\nu_1} \\ \frac{a_{21}}{\nu_2} & 0 & \frac{a_{23}}{\nu_2} & \frac{a_{24}}{\nu_2} \\ \frac{a_{31}}{\nu_3} & \frac{a_{32}}{\nu_3} & 0 & \frac{a_{41}}{\nu_3} \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 3/6 & 2/6 & 1/6 \\ 1/4 & 0 & 2/4 & 1/4 \\ 1/5 & 2/5 & 0 & 2/5 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

BIRTH AND DEATH PROCESSES.

Consider the population of current size $X_t = i$ where the time until next arrival A_i is exponentially distributed with parameter λ_i and the time until next departure D_i is exponentially distributed with parameter μ_i .

Also suppose the RVs A_i and D_i are independent.

 X_t a called a "birth and death process", where the parameters λ_i and μ_i are called the birth and death rates respectively.

So X_t is a continuous-time Markov chain with states $x_i = i, i = 0, 1, ...,$ with sojourn times

$$T_i = \min(A_i, D_i).$$

If $A_i > D_i$ then X_t enters state i - 1, i.e. $X_{t+D_i} = i - 1$ $(i \ge 1)$.

If $A_i \leq D_i$ then X_t enters state i + 1, i.e. $X_{t+A_i} = i + 1$ $(i \geq 0)$.

Examples.

The "Poisson process" has parameters

$$\lambda_i = \lambda > 0, \ \mu_i = 0, \ i \ge 0$$

and so has a constant arrival rate and no departures.

The "Yule process" has parameters

$$\lambda_i = i\lambda, \ \mu_i = 0, \ i \geq 1$$

and so has a linear arrival rate and no departures.

The process with parameters

$$\lambda_i = i\lambda + \theta, \ i \ge 0 \ \text{and} \ \mu_i = i\mu, \ i \ge 1$$

has linear arrival and departure rates.

Theorem 2 (birth and death process)

A birth and death process is a continuous-time homogeneous Markov chain with exponentially distributed sojourn times $T_i \sim \text{Exp}(\nu_i)$ having the rates

$$u_i = \begin{cases} \lambda_0 & \text{if } i = 0 \\ \lambda_i + \mu_i & \text{if } i \ge 1 \end{cases}$$

and the jump probabilities

$$p_{i,i-1} = rac{\mu_i}{\lambda_i + \mu_i}, \ i \geq 1$$
 and $p_{i,i+1} = rac{\lambda_i}{\lambda_i + \mu_i}, \ i \geq 0.$

Proof.

Step 1. First we show that $T_i \sim \text{Exp}(\nu_i)$. Note that for i = 0

$$P(T_0 > s) = P(A_0 > s)$$

and so $T_0 \sim A_0 \sim \mathsf{Exp}(\lambda_0)$.

Next observe that for $i = 1, 2, \ldots$

$$P(T_i > s) = P(\min(A_i, D_i) > s) = P(A_i > s, D_i > s)$$

= $P(A_i > s)P(D_i > s)$ (independence)
= $\int_s^\infty \lambda_i e^{-\lambda_i x} dx \int_s^\infty \mu_i e^{-\mu_i x} dx$
(using PDF of exponential RVs)
= $e^{-\lambda_i s} e^{-\mu_i s} = e^{-(\lambda_i + \mu_i)s}$
= $\int_s^\infty (\lambda_i + \mu_i) e^{-(\lambda_i + \mu_i)x} dx$

and we recognise the PDF of an exponential RV, so $T_i \sim \text{Exp}(\nu_i)$ with

$$\nu_i = \begin{cases} \lambda_0 & \text{if } i = 0\\ \lambda_i + \mu_i & \text{if } i \ge 1 \end{cases}$$

Step 2. Next we derive the jump probabilities. We have $P(A_i \le a, D_i \le d) = P(A_i \le a)P(D_i \le d) \quad (\text{independence})$ $= \int_0^a \lambda_i e^{-\lambda_i x} dx \int_0^d \mu_i e^{-\mu_i x} dx = \int_0^a \int_0^d \lambda_i e^{-\lambda_i x} \mu_i e^{-\mu_i y} dy dx$

SO

$$p_{i,i-1} = P(D_i < A_i) = P(0 < A_i < \infty, 0 \le D_i < A_i)$$
$$= \int_0^\infty \int_0^x \lambda_i e^{-\lambda_i x} \mu_i e^{-\mu_i y} dy dx = \frac{\mu_i}{\lambda_i + \mu_i}, \quad i \ge 1,$$

and

$$egin{aligned} & \mathsf{p}_{i,i+1} = \mathsf{P}(\mathsf{A}_i \leq \mathsf{D}_i) = 1 - \mathsf{P}(\mathsf{D}_i < \mathsf{A}_i) \ & = 1 - \mathsf{p}_{i,i-1} = rac{\lambda_i}{\lambda_i + \mu_i}, \ \ i \geq 1. \end{aligned}$$

To complete the proof we note that (obviously) $p_{0,1} = 1$.

KOLMOGOROV EQUATIONS.

So, now we know how to find the probabilities p_{ij} that apply when a jump occurs and therefore have P^{jump} introduced in (4).

But how do find the probabilities $p_{ij}(s)$ that also incorporate the waiting times and therefore obtain P(s) introduced in (3)?

We do so by solving Kolmogorov's differential equations.

These come in two flavours: backward and forward.

Theorem 3 (Kolmogorov's differential equations)

Backward Equations.

$$rac{d}{ds} p_{ij}(s) = \sum_{k
eq i} a_{ik} p_{kj}(s) + a_{ii} p_{ij}(s)$$

or

$$rac{d}{ds}oldsymbol{P}(s)=oldsymbol{AP}(s).$$

Forward Equations.

Under some regularity conditions

$$rac{d}{ds} p_{ij}(s) = \sum_{k
eq j} p_{ik}(s) a_{kj} + a_{jj} p_{ij}(s)$$

or

$$\frac{d}{ds}\boldsymbol{P}(s)=\boldsymbol{P}(s)\boldsymbol{A}.$$

Proof.

Technical so omitted.

A solution of the backward Kolmogorov equations for the case of homogenous Markov chains with a finite number of states can be written in the explicit form

$$\boldsymbol{P}(s) = e^{s\boldsymbol{A}} = \boldsymbol{I} + \sum_{k=1}^{\infty} \frac{s^k \boldsymbol{A}^k}{k!} = \left(\boldsymbol{I} + \sum_{k=1}^{\infty} \frac{\boldsymbol{A}^k}{k!}\right)^s \tag{6}$$

where *I* is the identity matrix.

Then the Chapman-Kolmogorov equation (1) becomes

$$\boldsymbol{P}(s+u) = \boldsymbol{P}(s)\boldsymbol{P}(u) = e^{(s+u)\boldsymbol{A}}, \quad t, u \ge 0,$$

and state probability (2) vector becomes

$$\boldsymbol{p}(t+s) = \boldsymbol{P}^{T}(s)\boldsymbol{p}(t) = e^{s\boldsymbol{A}^{T}}\boldsymbol{p}(t), \quad t,s \geq 0,$$

Example (credit rating continued).

Recall the generator matrix

$$\boldsymbol{A} = \begin{pmatrix} -0.06 & 0.03 & 0.02 & 0.01 \\ 0.1 & -0.4 & 0.2 & 0.1 \\ 0.2 & 0.4 & -1.0 & 0.4 \\ 0.0 & 0.0 & 0.0 & 0.0 \end{pmatrix}$$

The Mathematica example below computes P(s) for various s.

```
AA = \{\{-0.06, 0.03, 0.02, 0.01\}, \{0.1, -0.4, 0.2, 0.1\}, \{0.2, 0.4, -1.0, 0.4\}, \{0, 0, 0, 0\}\};
PP[s_] := MatrixExp[s AA];
Table[PP[s] // Chop // MatrixForm, \{s, \{0, 100, 1000\}\}]
\left\{\begin{pmatrix}1. & 0 & 0 \\ 0 & 1. & 0 \\ 0 & 0 & 1. \\ 0 & 0 & 1. \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix}0.0238099 & 0.00325194 & 0.00116929 & 0.971769 \\ 0.0120147 & 0.00164096 & 0.000590034 & 0.985754 \\ 0.0093054 & 0.0013563 & 0.000487682 & 0.988225 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix}0 & 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}\right\}
```

So as $s \to \infty$ the probability of default goes to one!

Example (interest rate model with two states).

Assume the interest rate process X_t takes only the two states $x_1 = 0.05$ and $x_2 = 0.06$ with the generator

$$\mathbf{A} = \begin{pmatrix} -\lambda & \lambda \\ \mu & -\mu \end{pmatrix}$$

with rates given per year (e.g. $\lambda = \mu = 5$).

The waiting times between jumps are exponentially distributed, so, for example, the mean waiting time for the jump $x_1 \rightarrow x_2$ is $\frac{1}{\lambda}$ while the variance of the waiting time for the jump $x_2 \rightarrow x_1$ is $\frac{1}{\mu^2}$.

The backward equations are

$$rac{d}{ds} p_{1,1}(s) = -\lambda p_{1,1}(s) + \lambda p_{2,1}(s), \quad p_{1,2}(s) = 1 - p_{1,1}(s)$$

and

$$\frac{d}{ds}p_{2,1}(s) = \mu p_{1,1}(s) - \mu p_{2,1}(s), \quad p_{2,2}(s) = 1 - p_{2,1}(s).$$

One can check that the solutions are

$$p_{1,1}(s) = rac{\lambda}{\lambda+\mu} e^{-(\lambda+\mu)s} + rac{\mu}{\lambda+\mu}$$

and

$$p_{2,1}(s)=rac{\mu}{\lambda+\mu}(1-e^{-(\lambda+\mu)s}).$$

It follows that for large s

$$p_{1,1}(s)pproxrac{\mu}{\lambda+\mu}, \quad p_{1,2}(s)=1-p_{11}(s)pproxrac{\lambda}{\lambda+\mu}$$

and

$$p_{2,1}(s) \approx \frac{\mu}{\lambda+\mu}, \quad p_{2,2}(s) = 1 - p_{21}(s) \approx \frac{\lambda}{\lambda+\mu}.$$

LIMITING PROBABILITIES.

Theorem 4 (ergodic continuous-time Markov chain)

A homogenous Markov chain X_t is called ergodic if $\lim_{t\to\infty} \mathbf{p}(t)$ exists and this limit does not depend on the initial distribution $\mathbf{p}(0)$.

If a Markov chain is ergodic, then for all initial states i

$$\lim_{s o \infty} p_{ij}(s) = \lim_{t o \infty} p_j(t) = \pi_j \quad ext{or} \quad \lim_{t o \infty} oldsymbol{p}(t) = \pi$$

so that

$$\lim_{t\to\infty} \boldsymbol{p}(t+s) = \lim_{t\to\infty} \left(\boldsymbol{P}^{\mathsf{T}}(s) \boldsymbol{p}(t) \right)$$

becomes

$$\pi = \boldsymbol{P}^{\mathsf{T}}(s)\pi = e^{s\boldsymbol{A}^{\mathsf{T}}}\pi = (\boldsymbol{I} + \frac{s\boldsymbol{A}^{\mathsf{T}}}{1!} + \frac{s^2(\boldsymbol{A}^{\mathsf{T}})^2}{2!} + \cdots)\pi$$

where π is the stationary distribution of X_t .

That is, the stationary distribution can be found as the solution to

$$\mathbf{A}^T \boldsymbol{\pi} = \mathbf{0}$$
 subject to $\sum_{j=1}^n \pi_j = 1.$ (7)

CLASSIFICATION OF STATES.

This is the same as for the discrete-time case, with the exception that periodicity does not apply to the continuous-time case (refer to Chapter 5).

PROCESSES WITH INDEPENDENT INCREMENTS.

We begin with a general definition and proposition.

Definition 1 (process with independent increments)

A stochastic process X_t , $t \in D$, is said to possess independent increments if any RVs $X_t - X_s$ and $X_u - X_0$ are independent for any $u \le s \le t$.

Note that it is typically supposed that $X_0 = 0$.

Proposition 1 (process with independent increments is Markov)

If a stochastic process X_t has independent increments then it is a Markov process.

Compound Poisson processes

Proof.
For
$$X_0 = 0$$
 and any $y, x_1, ..., x_n, x$

$$P(X_{t+s} \le y | X_{t_1} = x_1, ..., X_{t_n} = x_n, X_t = x)$$

$$= P(X_{t+s} - X_t \le y - x | X_{t_1} = x_1, ..., X_{t_n} = x_n, X_t = x)$$

$$= P(X_{t+s} - X_t \le y - x | X_{t_1} - X_0 = x_1 - 0, X_{t_2} - X_{t_1} = x_2 - x_1 ..., X_t - X_{t_n} = x - x_n)$$

$$= P(X_{t+s} - X_t \le y - x) \quad \text{(independent increments)}$$

$$= P(X_{t+s} - X_t \le y - x | X_t = x)$$

$$= P(X_{t+s} - X_t + X_t \le y - x + x | X_t = x)$$

$$= P(X_{t+s} \le y | X_t = x)$$

which is the Markov property.

Note that if a process with independent increments X_t has a discrete distribution then

$$\begin{aligned} &P(X_{t_1} = x_1, X_{t_2} = x_2, \dots, X_{t_n} = x_n) \\ &= P(X_{t_1} = x_1, X_{t_2} - X_{t_1} = x_2 - x_1 \dots, X_{t_n} - X_{t_{n-1}} = x_n - x_{n-1}) \\ &= P(X_{t_1} = x_1) \prod_{k=2}^n P(X_{t_k} - X_{t_{k-1}} = x_k - x_{k-1}). \end{aligned}$$

So, all *n*-dimensional distributions can be expressed in terms of only one function, the distribution of increments.

Similarly, for the case of continuous distributions we have

$$f_{X_{t_1},...,X_{t_n}}(x_1,...,x_n) = f_{X_{t_1}}(x_1) \prod_{k=2}^n f_{X_{t_k}-X_{x_{k-1}}}(x_k-x_{k-1}).$$

Definition 2 (stationary and independent increments)

A stochastic process X_t is said to possess stationary independent increments if any increments $X_t - X_s$ for disjoint intervals (s, t) are independent and the distribution of $X_t - X_s$ is dependent only on the interval t - s.

Example (Wiener process).

The increments of the Wiener process

$$(W_t - W_s) \sim N(m(t-s), \sigma^2(t-s))$$

and the transition density is

$$f(y,t|x,s) = rac{1}{\sqrt{2\pi\sigma^2(t-s)}}e^{-rac{(y-x-m(t-s))^2}{2\sigma^2(t-s)}}.$$

Compound Poisson processes

POISSON PROCESS.

Definition 3 (Counting process)

A stochastic process N_t , $t \in [0, \infty)$, is said to be a counting process (or, a point process) if N_t represents the number of "events" that have occurred up to time t.

Properties of N_t include

- **1** N_t is integer-valued;
- **2** if $s \leq t$ then $N_s \leq N_t$;
- **3** for s < t, $N_t N_s$ is the number of events occurring in [s, t].

Examples of applications include

- number of telephone calls received
- number of stock trades etc
- number of jumps in a stochastic process.

Compound Poisson processes

Denote by S_n the arrival time of the *n*-th event and let T_n be the interarrival times, i.e. the time taken between the (n-1)-th and *n*-th events, so that

$$S_n = \sum_{i=1}^n T_i$$

We provide three definitions of a Poisson process.

Definition 4 (Poisson process 1)

The counting process N_t with $N_0 = 0$ is said to be a Poisson process with intensity (or rate) $\lambda > 0$ if N_t has independent increments and for all $s, t \ge 0$

$$P(N_{t+s}-N_t=k)=e^{-\lambda s}\frac{(\lambda s)^k}{k!}, \quad k=0,1,\ldots.$$

Definition 5 (Poisson process 2)

The counting process N_t with $N_0 = 0$ is said to be a Poisson process with intensity (or rate) $\lambda > 0$ if N_t is a Markov process with

$$P(N_{t+h} - N_t = 1) = \lambda h + o(h),$$

 $P(N_{t+h} - N_t \ge 2) = o(h)$

as $h \rightarrow 0$.

Definition 6 (Poisson process 3)

The counting process N_t with $N_0 = 0$ is said to be a Poisson process with intensity (or rate) $\lambda > 0$ if the interarrival times $T_n \sim \text{Exp}(\lambda)$ and independent.

Theorem 5 (equivalence of Poisson process definitions)

Definitions 4, 5 and 6 are equivalent.

Proof. Omitted.

For our purposes, Definitions 4 and 6 will be the most useful.

The next proposition establishes some fundamental properties of a Poisson process.

Proposition 2 (properties of Poisson process)

If N_t is a Poisson process with rate $\lambda > 0$ then the CF

$$arphi_{\mathsf{N}_t}(u) \mathrel{\mathop:}= E[e^{iu \mathsf{N}_t}] = \exp(\lambda t(e^{iu}-1))$$

and the MGF

$$M_{N_t}(u) := E[e^{uN_t}] = \exp(\lambda t(e^u - 1)).$$

Also,

$$E[N_t] = \operatorname{var}(N_t) = \lambda t$$
 and $\operatorname{cov}(N_t, N_s) = \lambda \min(t, s)$.

Proof.

The proofs of the forms of φ_{N_t} and M_{N_t} are class exercises.

The CF or MGF can be used to derive the mean and variance formulae.

For the covariance property note that for s < t

$$cov(N_t, N_s) = cov(N_t - N_s + N_s, N_s)$$

= cov(N_t - N_s, N_s) + cov(N_s, N_s)
= cov(N_s, N_s) (independent increments)
= var(N_s)
= $\lambda s.$

By similar reasoning for t < s we have $cov(N_t, N_s) = \lambda t$.

Combining the two cases gives the desired result.

Compound Poisson processes

The final property we establish concerns the sum of independent Poisson processes.

Proposition 3 (sum of independent Poisson processes)

Let $N_t^{(1)}$ and $N_t^{(2)}$ be independent Poisson processes with rates λ_1 and λ_2 .

Then $Z_t = N_t^{(1)} + N_t^{(2)}$ is the Poisson process with rate $\lambda_1 + \lambda_2$.

Proof.

By the moment generating function of Proposition 4

$$E[e^{uZ_t}] = E[e^{u(N_t^{(1)} + N_t^{(2)})}] = E[e^{uN_t^{(1)}}]E[e^{uN_t^{(2)}}] \quad \text{(independence)}$$
$$= e^{\lambda_1 t(e^u - 1)}e^{\lambda_2 t(e^u - 1)}$$
$$= e^{(\lambda_1 + \lambda_2)t(e^u - 1)}$$

which is the MGF of Poisson process with rate $\lambda_1 + \lambda_2$.

The Mathematica example below shows a simulated path of a Poisson process N_t with $\lambda = 10$.

COMPOUND POISSON PROCESS.

Definition 7 (Compound Poisson process)

A stochastic process X_t is said to be a compound Poisson process if it can be represented as

$$X_t = \sum_{k=1}^{N_t} Y_k$$

where N_t is a Poisson process with rate λ and Y_k are iid RVs which are also independent of N_t .

Example (unit jump size). Let $X_0 = 0$ and $Y_k \equiv 1$.

Then $X_t = N_t$.

Example (insurance company model). Let RV Y_k be claim size.

If the interarrival times T_n are independent and have the exponential distribution with parameter $\lambda > 0$, then the total loss is

$$X_t = \sum_{k=1}^{N_t} Y_k.$$

The insurance company will be ruined when the loss X_t exceeds the equity of the company for the first time.

The next theorem provides the characteristic function a compound Poisson process.

Theorem 6 (characteristic function of compound Poisson process)

A compound Poisson Process X_t has independent increments and its characteristic function is given by

$$\varphi_{X_t}(u) := E[e^{iuX_t}] = e^{\lambda t(\varphi_Y(u)-1)}$$

where $\varphi_Y(u) := E[e^{iuY_k}].$

Proof.

The independence of increments property follows the independence of increments of a Poisson process and the independence of the Y_k RVs.

Compound Poisson processes

The characteristic function

$$E[e^{iuX_t}] = E[e^{iu\sum_{k=1}^{N_t} Y_k}] = E[E[e^{iu\sum_{k=1}^{N_t} Y_k}|N_t]] \quad \text{(tower law)}$$

$$= \sum_{n=0}^{\infty} E[e^{iu\sum_{k=1}^{N_t} Y_k}|N_t = n]P(N_t = n)$$

$$= \sum_{n=0}^{\infty} E[e^{iu\sum_{k=1}^{n} Y_k}]P(N_t = n) \quad \text{(condition, independence)}$$

$$= \sum_{n=0}^{\infty} \prod_{k=1}^{n} E[e^{iuY_k}]P(N_t = n) \quad \text{(independence)}$$

$$= \sum_{n=0}^{\infty} E[e^{iuY_k}]^n P(N_t = n) \quad (Y_k \text{ iid})$$

$$= e^{-\lambda t} \sum_{n=0}^{\infty} \frac{(\lambda t \varphi_Y(u))^n}{n!} = e^{-\lambda t} e^{\lambda t \varphi_Y(u)} \quad \text{(Taylor series)}$$

$$= e^{\lambda t (\varphi_Y(u)-1)}.$$

The next corollary establishes some properties of a compound Poisson process.

Corollary 1 (properties of compound Poisson process)

If $E(Y^2) < \infty$ then

 $E[X_t] = \lambda t E[Y]$ and $var(X_t) = \lambda t E[Y^2]$.

Proof.

As class exercises.

Compound Poisson processes

The Mathematica example below shows a simulated path of a compound Poisson process X_t with $\lambda = 10$ and $Y_k \sim N(1, 4)$.

```
 \lambda = 10; TT = 1; μ = 1; σ = 2; 
data = RandomFunction [
CompoundPoissonProcess[λ, NormalDistribution [μ, σ]],
   {0, TT}];
ListLinePlot[data, InterpolationOrder → 0, AxesLabel → {"t", "X<sub>t</sub>"}]
```


Compound Poisson processes

Example.

Suppose families migrate to Australia at a Poisson rate of $\lambda = 15$ (per day) and that each family has 1, 2, 3 and 4 members with probabilities $\frac{1}{6}$, $\frac{1}{3}$, $\frac{1}{3}$ and $\frac{1}{6}$. What is the mean and variance of the number of migrants arriving per week?

 ${\it Solution.}$ Suppose additionally that families migrate independently. Then the number of migrants

$$X_t = \sum_{k=1}^{N_t} Y_k$$

is the compound Poisson Process with $E(Y_k) = \frac{5}{2}$ and $E(Y_k^2) = \frac{43}{6}$.

Therefore

$$E[X_7] = 15 \times 7 \times \frac{5}{2} = 262\frac{1}{2},$$

var $(X_7) = 15 \times 7 \times \frac{43}{6} = 752\frac{1}{2}.$

References I