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Continuous-time homogenous Markov chains

In this section we consider a continuous-time, homogeneous Markov
chain Xt with n states and t ∈ [0, ∞).

Many results from the discrete-time case carry over to the
continuous-time case, such as ergodicity and classification of states.

Most importantly, recall from Chapter 5 the Chapman-Kolmogorov
equation

P(s + u) = P(s)P(u), s, u ≥ 0, (1)

and state probability vector calculated as

p(t + s) = PT (s)p(t), t, s ≥ 0, (2)

which are valid for both the discrete and continuous-time cases.

How can we find P(s) and simulate Xt?
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Continuous-time homogenous Markov chains

The fundamental difference between discrete and continuous-time
Markov chains is that discrete-time chains are not defined between jumps
(or state changes) but continuous-time chains are.

Let Xt = xi and denote the waiting (sojourn) time of state xi as

Ti := min(s > 0|Xt+s ̸= xi).

The waiting times themselves are RVs.

Theorem 1 (waiting times)
Let Xt be a homogeneous, continuous-time Markov chain.

Then all waiting times Ti are independent and have an exponential
distribution with some parameter νi ≥ 0, i.e. Ti ∼ Exp(νi).

The νi are called the “intensities” or “instantaneous rates” of the chain.

4 / 44



Continuous-time homogenous Markov chains

Proof.
By definition of Ti we have

{Ti > s} = {Xt+u = xi , 0 ≤ u ≤ s}

so

P(Ti >v + s|Ti > v) = P(Xt+u = xi , 0 ≤ u ≤ v + s|Xt+u = xi , 0 ≤ u ≤ v)
= P(Xt+u = xi , v ≤ u ≤ v + s|Xt+u = xi , 0 ≤ u ≤ v)
(because of condition)
= P(Xt+u = xi , v ≤ u ≤ v + s|Xt+v = xi) (Markov property)
= P(Xt+u = xi , 0 ≤ u ≤ s|Xt = xi) (homogeneity)
= P(Xt+u = xi , 0 ≤ u ≤ s)
= P(Ti > s).
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Continuous-time homogenous Markov chains

That is, we have the memoryless property

P(Ti > v + s|Ti > v) = P(Ti > s),

a property only possessed by the exponential distribution (not proved).

So

P(Ti > s) = 1 − P(Ti ≤ s)
= 1 − (1 − e−νi s)
(CDF of Ti ∼ Exp(νi))
= e−νi s

for 0 ≤ ν1 < ∞.
——————————————————————————————
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Continuous-time homogenous Markov chains

In order to obtain the transition probability matrix

P(s) =
(
pij(s)

)
1≤i,j≤n =


p11(s) p12(s) · · · p1n(s)
p21(s) p22(s) · · · p2n(s)

...
...

. . .
...

pn1(s) pn2(s) · · · pnn(s)

 (3)

where
pij(s) = P(Xt+s = xj |Xt = xi), i , j ∈ {1, . . . , n},

we first consider the jump probability matrix

P jump =
(
pij

)
1≤i,j≤n =


p11 p12 · · · p1n
p21 p22 · · · p2n
...

...
. . .

...
pn1 pn2 · · · pnn

 (4)

where
pij = P(X = xj after jumping from X = xi), i , j ∈ {1, . . . , n},
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Continuous-time homogenous Markov chains

The jump probability matrix P jump contains the probabilities that apply
when a jump occurs, and can be considered analogous to the 1-step
transition probability matrix of a discrete-time chain. Note this matrix
does not depend s.

The transition probability matrix P(s) incorporates the information from
P jump but also takes into account the (exponential) waiting times
between jumps. Note that this matrix does depend on s.

Of course, the usual properties

0 ≤ pij(s), pij ≤ 1,
∑

j
pij(s) = 1 and

∑
j

pij = 1

apply.

If state xi is an absorbing state, then pii = 1, pij = 0 for i ̸= j and
νi = 0.

If state xi is not an absorbing state, then pii = 0 and νi > 0.
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Continuous-time homogenous Markov chains

Define the instantaneous transition rate

aij := νipij for i ̸= j and aii = −νi .

For non-absorbing states xi∑
j ̸=i

aij =
∑
j ̸=i

νipij = νi
∑
j ̸=i

pij = νi

and

pij = aij
νi

= aij∑
j ̸=i aij

, νi ̸= 0.

We also see ∑
j

aij =
∑
j ̸=i

aij + aii = νi − νi = 0

So, if we are given aij we can find νi and pij (or vice versa).
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Continuous-time homogenous Markov chains

We collect this information together into the generator matrix or
intensity matrix

A =
(
aij

)
1≤i,j≤n =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann



=


−ν1 ν1p12 · · · ν1p1n
ν2p21 −ν2 · · · ν2p2n

...
...

. . .
...

νnpn1 νnpn2 · · · −νn

 . (5)

For absorbing states xi set νi = 0.
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Continuous-time homogenous Markov chains

Example (credit rating).
Let the possible ratings (states) be x1 = AA , x2 = B, x3 = C , x4 = D
(default) with generator matrix

A =


−0.06 0.03 0.02 0.01

0.1 −0.4 0.2 0.1
0.2 0.4 −1.0 0.4
0.0 0.0 0.0 0.0


with the rates (intensities) given per year.

Noting that state x4 = D is absorbing, it follows that

P jump =


0 a12

ν1
a13
ν1

a14
ν1a21

ν2
0 a23

ν2
a24
ν2a31

ν3
a32
ν3

0 a41
ν3

0 0 0 1

 =


0 3/6 2/6 1/6

1/4 0 2/4 1/4
1/5 2/5 0 2/5
0 0 0 1

 .

——————————————————————————————
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Continuous-time homogenous Markov chains

BIRTH AND DEATH PROCESSES.
Consider the population of current size Xt = i where the time until next
arrival Ai is exponentially distributed with parameter λi and the time
until next departure Di is exponentially distributed with parameter µi .

Also suppose the RVs Ai and Di are independent.

Xt a called a “birth and death process”, where the parameters λi and µi
are called the birth and death rates respectively.

So Xt is a continuous-time Markov chain with states xi = i , i = 0, 1, . . .,
with sojourn times

Ti = min(Ai , Di).

If Ai > Di then Xt enters state i − 1, i.e. Xt+Di = i − 1 (i ≥ 1).

If Ai ≤ Di then Xt enters state i + 1, i.e. Xt+Ai = i + 1 (i ≥ 0).
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Continuous-time homogenous Markov chains

Examples.
The “Poisson process” has parameters

λi = λ > 0, µi = 0, i ≥ 0

and so has a constant arrival rate and no departures.

The “Yule process” has parameters

λi = iλ, µi = 0, i ≥ 1

and so has a linear arrival rate and no departures.

The process with parameters

λi = iλ + θ, i ≥ 0 and µi = iµ, i ≥ 1

has linear arrival and departure rates.
——————————————————————————————
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Continuous-time homogenous Markov chains

Theorem 2 (birth and death process)
A birth and death process is a continuous-time homogeneous Markov
chain with exponentially distributed sojourn times Ti ∼ Exp(νi) having
the rates

νi =
{

λ0 if i = 0
λi + µi if i ≥ 1

and the jump probabilities

pi,i−1 = µi
λi + µi

, i ≥ 1 and pi,i+1 = λi
λi + µi

, i ≥ 0.

Proof.
Step 1. First we show that Ti ∼ Exp(νi). Note that for i = 0

P(T0 > s) = P(A0 > s)

and so T0 ∼ A0 ∼ Exp(λ0).
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Continuous-time homogenous Markov chains

Next observe that for i = 1, 2, . . .

P(Ti > s) = P
(

min(Ai , Di) > s
)

= P(Ai > s, Di > s)
= P(Ai > s)P(Di > s) (independence)

=
∫ ∞

s
λie−λi x dx

∫ ∞

s
µie−µi x dx

(using PDF of exponential RVs)
= e−λi se−µi s = e−(λi +µi )s

=
∫ ∞

s
(λi + µi)e−(λi +µi )x dx

and we recognise the PDF of an exponential RV, so Ti ∼ Exp(νi) with

νi =
{

λ0 if i = 0
λi + µi if i ≥ 1

.

——————————————————————————————
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Continuous-time homogenous Markov chains

Step 2. Next we derive the jump probabilities. We have

P(Ai ≤ a,Di ≤ d) = P(Ai ≤ a)P(Di ≤ d) (independence)

=
∫ a

0
λie−λi x dx

∫ d

0
µie−µi x dx =

∫ a

0

∫ d

0
λie−λi x µie−µi y dydx

so

pi,i−1 = P(Di < Ai) = P(0 < Ai < ∞, 0 ≤ Di < Ai)

=
∫ ∞

0

∫ x

0
λie−λi x µie−µi y dydx = µi

λi + µi
, i ≥ 1,

and

pi,i+1 = P(Ai ≤ Di) = 1 − P(Di < Ai)

= 1 − pi,i−1 = λi
λi + µi

, i ≥ 1.

To complete the proof we note that (obviously) p0,1 = 1.
——————————————————————————————
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Continuous-time homogenous Markov chains

KOLMOGOROV EQUATIONS.
So, now we know how to find the probabilities pij that apply when a
jump occurs and therefore have P jump introduced in (4).

But how do find the probabilities pij(s) that also incorporate the waiting
times and therefore obtain P(s) introduced in (3)?

We do so by solving Kolmogorov’s differential equations.

These come in two flavours: backward and forward.
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Continuous-time homogenous Markov chains

Theorem 3 (Kolmogorov’s differential equations)
Backward Equations.

d
ds pij(s) =

∑
k ̸=i

aikpkj(s) + aiipij(s)

or
d
ds P(s) = AP(s).

Forward Equations.
Under some regularity conditions

d
ds pij(s) =

∑
k ̸=j

pik(s)akj + ajjpij(s)

or
d
ds P(s) = P(s)A.

18 / 44



Continuous-time homogenous Markov chains

Proof.
Technical so omitted.
——————————————————————————————

A solution of the backward Kolmogorov equations for the case of
homogenous Markov chains with a finite number of states can be written
in the explicit form

P(s) = esA = I +
∞∑

k=1

skAk

k! =
(

I +
∞∑

k=1

Ak

k!

)s
(6)

where I is the identity matrix.

Then the Chapman-Kolmogorov equation (1) becomes

P(s + u) = P(s)P(u) = e(s+u)A, t, u ≥ 0,

and state probability (2) vector becomes

p(t + s) = PT (s)p(t) = esAT
p(t), t, s ≥ 0,
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Continuous-time homogenous Markov chains

Example (credit rating continued).
Recall the generator matrix

A =


−0.06 0.03 0.02 0.01

0.1 −0.4 0.2 0.1
0.2 0.4 −1.0 0.4
0.0 0.0 0.0 0.0

 .

The Mathematica example below computes P(s) for various s.
AA = {{-0.06, 0.03, 0.02, 0.01}, {0.1, -0.4, 0.2, 0.1}, {0.2, 0.4, -1.0, 0.4},

{0, 0, 0, 0}};

PP[s_] := MatrixExp[s AA];

Table[PP[s] // Chop // MatrixForm, {s, {0, 100, 1000}}]

So as s → ∞ the probability of default goes to one!
——————————————————————————————
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Continuous-time homogenous Markov chains

Example (interest rate model with two states).
Assume the interest rate process Xt takes only the two states x1 = 0.05
and x2 = 0.06 with the generator

A =
(

−λ λ
µ −µ

)
with rates given per year (e.g. λ = µ = 5).

The waiting times between jumps are exponentially distributed, so, for
example, the mean waiting time for the jump x1 → x2 is 1

λ while the
variance of the waiting time for the jump x2 → x1 is 1

µ2 .

The backward equations are
d
ds p1,1(s) = −λp1,1(s) + λp2,1(s), p1,2(s) = 1 − p1,1(s)

and
d
ds p2,1(s) = µp1,1(s) − µp2,1(s), p2,2(s) = 1 − p2,1(s).
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Continuous-time homogenous Markov chains

One can check that the solutions are

p1,1(s) = λ

λ + µ
e−(λ+µ)s + µ

λ + µ

and
p2,1(s) = µ

λ + µ
(1 − e−(λ+µ)s).

It follows that for large s

p1,1(s) ≈ µ

λ + µ
, p1,2(s) = 1 − p11(s) ≈ λ

λ + µ

and
p2,1(s) ≈ µ

λ + µ
, p2,2(s) = 1 − p21(s) ≈ λ

λ + µ
.

——————————————————————————————
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Continuous-time homogenous Markov chains

LIMITING PROBABILITIES.
Theorem 4 (ergodic continuous-time Markov chain)
A homogenous Markov chain Xt is called ergodic if limt→∞ p(t) exists
and this limit does not depend on the initial distribution p(0).

If a Markov chain is ergodic, then for all initial states i

lim
s→∞

pij(s) = lim
t→∞

pj(t) = πj or lim
t→∞

p(t) = π

so that

lim
t→∞

p(t + s) = lim
t→∞

(
PT (s)p(t)

)
becomes

π = PT (s)π = esAT
π = (I + sAT

1! + s2(AT )2

2! + · · · )π

where π is the stationary distribution of Xt .
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Continuous-time homogenous Markov chains

That is, the stationary distribution can be found as the solution to

AT π = 0 subject to
n∑

j=1
πj = 1. (7)

CLASSIFICATION OF STATES.
This is the same as for the discrete-time case, with the exception that
periodicity does not apply to the continuous-time case (refer to Chapter
5).
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Compound Poisson processes

PROCESSES WITH INDEPENDENT INCREMENTS.
We begin with a general definition and proposition.

Definition 1 (process with independent increments)
A stochastic process Xt , t ∈ D, is said to possess independent increments
if any RVs Xt − Xs and Xu − X0 are independent for any u ≤ s ≤ t.

Note that it is typically supposed that X0 = 0.

Proposition 1 (process with independent increments is Markov)
If a stochastic process Xt has independent increments then it is a Markov
process.
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Compound Poisson processes

Proof.
For X0 = 0 and any y , x1, . . . , xn, x

P(Xt+s ≤ y |Xt1 = x1, . . . , Xtn = xn, Xt = x)
= P(Xt+s − Xt ≤ y − x |Xt1 = x1, . . . , Xtn = xn, Xt = x)
= P(Xt+s − Xt ≤ y − x

|Xt1 − X0 = x1 − 0, Xt2 − Xt1 = x2 − x1 . . . , Xt − Xtn = x − xn)
= P(Xt+s − Xt ≤ y − x) (independent increments)
= P(Xt+s − Xt ≤ y − x |Xt = x)
= P(Xt+s − Xt + Xt ≤ y − x + x |Xt = x)
= P(Xt+s ≤ y |Xt = x)

which is the Markov property.
——————————————————————————————
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Compound Poisson processes

Note that if a process with independent increments Xt has a discrete
distribution then

P(Xt1 = x1, Xt2 = x2, . . . , Xtn = xn)
= P(Xt1 = x1, Xt2 − Xt1 = x2 − x1 . . . , Xtn − Xtn−1 = xn − xn−1)

= P(Xt1 = x1)
n∏

k=2
P(Xtk − Xtk−1 = xk − xk−1).

So, all n-dimensional distributions can be expressed in terms of only one
function, the distribution of increments.

Similarly, for the case of continuous distributions we have

fXt1 ,...,Xtn
(x1, ..., xn) = fXt1

(x1)
n∏

k=2
fXtk −Xxk−1

(xk − xk−1).
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Compound Poisson processes

Definition 2 (stationary and independent increments)
A stochastic process Xt is said to possess stationary independent
increments if any increments Xt − Xs for disjoint intervals (s, t) are
independent and the distribution of Xt − Xs is dependent only on the
interval t − s.

Example (Wiener process).
The increments of the Wiener process

(Wt − Ws) ∼ N
(
m(t − s), σ2(t − s)

)
and the transition density is

f (y , t|x , s) = 1√
2πσ2(t − s)

e− (y−x−m(t−s))2

2σ2(t−s) .
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Compound Poisson processes

POISSON PROCESS.

Definition 3 (Counting process)
A stochastic process Nt , t ∈ [0, ∞), is said to be a counting process (or,
a point process) if Nt represents the number of “events” that have
occurred up to time t.

Properties of Nt include
1 Nt is integer-valued;
2 if s ≤ t then Ns ≤ Nt ;
3 for s < t, Nt − Ns is the number of events occurring in [s, t].

Examples of applications include
number of telephone calls received
number of stock trades etc
number of jumps in a stochastic process.
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Compound Poisson processes

Denote by Sn the arrival time of the n-th event and let Tn be the
interarrival times, i.e. the time taken between the (n − 1)-th and n-th
events, so that

Sn =
n∑

i=1
Ti .

We provide three definitions of a Poisson process.

Definition 4 (Poisson process 1)
The counting process Nt with N0 = 0 is said to be a Poisson process with
intensity (or rate) λ > 0 if Nt has independent increments and for all
s, t ≥ 0

P(Nt+s − Nt = k) = e−λs (λs)k

k! , k = 0, 1, . . . .

30 / 44



Compound Poisson processes

Definition 5 (Poisson process 2)
The counting process Nt with N0 = 0 is said to be a Poisson process with
intensity (or rate) λ > 0 if Nt is a Markov process with

P(Nt+h − Nt = 1) = λh + o(h),
P(Nt+h − Nt ≥ 2) = o(h)

as h → 0.

Definition 6 (Poisson process 3)
The counting process Nt with N0 = 0 is said to be a Poisson process with
intensity (or rate) λ > 0 if the interarrival times Tn ∼ Exp(λ) and
independent.
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Compound Poisson processes

Theorem 5 (equivalence of Poisson process definitions)
Definitions 4, 5 and 6 are equivalent.

Proof.
Omitted.
——————————————————————————————

For our purposes, Definitions 4 and 6 will be the most useful.
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Compound Poisson processes

The next proposition establishes some fundamental properties of a
Poisson process.

Proposition 2 (properties of Poisson process)
If Nt is a Poisson process with rate λ > 0 then the CF

φNt (u) := E [e iuNt ] = exp(λt(e iu − 1))

and the MGF

MNt (u) := E [euNt ] = exp(λt(eu − 1)).

Also,

E [Nt ] = var(Nt) = λt and cov(Nt , Ns) = λ min(t, s).
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Compound Poisson processes

Proof.
The proofs of the forms of φNt and MNt are class exercises.

The CF or MGF can be used to derive the mean and variance formulae.

For the covariance property note that for s < t

cov(Nt , Ns) = cov(Nt − Ns + Ns , Ns)
= cov(Nt − Ns , Ns) + cov(Ns , Ns)
= cov(Ns , Ns) (independent increments)
= var(Ns)
= λs.

By similar reasoning for t < s we have cov(Nt , Ns) = λt.

Combining the two cases gives the desired result.
——————————————————————————————
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Compound Poisson processes

The final property we establish concerns the sum of independent Poisson
processes.

Proposition 3 (sum of independent Poisson processes)
Let N(1)

t and N(2)
t be independent Poisson processes with rates λ1 and λ2.

Then Zt = N(1)
t + N(2)

t is the Poisson process with rate λ1 + λ2.

Proof.
By the moment generating function of Proposition 4

E [euZt ] = E
[
eu(N(1)

t +N(2)
t )] = E

[
euN(1)

t
]
E

[
euN(2)

t
]

(independence)
= eλ1t(eu−1)eλ2t(eu−1)

= e(λ1+λ2)t(eu−1)

which is the MGF of Poisson process with rate λ1 + λ2.
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Compound Poisson processes

The Mathematica example below shows a simulated path of a Poisson
process Nt with λ = 10.

λ = 10; TT = 1;

data = RandomFunction[PoissonProcess[λ], {0, TT}];

ListStepPlot[data, AxesLabel → {"t", "Nt"}]

0.2 0.4 0.6 0.8 1.0
t
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4
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Nt
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Compound Poisson processes

COMPOUND POISSON PROCESS.

Definition 7 (Compound Poisson process)
A stochastic process Xt is said to be a compound Poisson process if it
can be represented as

Xt =
Nt∑

k=1
Yk

where Nt is a Poisson process with rate λ and Yk are iid RVs which are
also independent of Nt .

Example (unit jump size).
Let X0 = 0 and Yk ≡ 1.

Then Xt = Nt .
——————————————————————————————
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Compound Poisson processes

Example (insurance company model).
Let RV Yk be claim size.

If the interarrival times Tn are independent and have the exponential
distribution with parameter λ > 0, then the total loss is

Xt =
Nt∑

k=1
Yk .

The insurance company will be ruined when the loss Xt exceeds the
equity of the company for the first time.
——————————————————————————————
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Compound Poisson processes

The next theorem provides the characteristic function a compound
Poisson process.

Theorem 6 (characteristic function of compound Poisson process)
A compound Poisson Process Xt has independent increments and its
characteristic function is given by

φXt (u) := E [e iuXt ] = eλt(φY (u)−1)

where φY (u) := E [e iuYk ].

Proof.
The independence of increments property follows the independence of
increments of a Poisson process and the independence of the Yk RVs.
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Compound Poisson processes

The characteristic function

E [e iuXt ] = E
[
e iu

∑Nt
k=1

Yk
]

= E
[
E

[
e iu

∑Nt
k=1

Yk |Nt
]]

(tower law)

=
∞∑

n=0
E

[
e iu

∑Nt
k=1

Yk |Nt = n
]
P(Nt = n)

=
∞∑

n=0
E

[
e iu

∑n
k=1

Yk
]
P(Nt = n) (condition, independence)

=
∞∑

n=0

n∏
k=1

E
[
e iuYk

]
P(Nt = n) (independence)

=
∞∑

n=0
E

[
e iuYk

]nP(Nt = n) (Yk iid)

= e−λt
∞∑

n=0

(
λtφY (u)

)n

n! = e−λteλtφY (u) (Taylor series)

= eλt(φY (u)−1).

—————————————————————————————— 40 / 44



Compound Poisson processes

The next corollary establishes some properties of a compound Poisson
process.

Corollary 1 (properties of compound Poisson process)
If E (Y 2) < ∞ then

E [Xt ] = λtE [Y ] and var(Xt) = λtE [Y 2].

Proof.
As class exercises.
——————————————————————————————
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Compound Poisson processes

The Mathematica example below shows a simulated path of a compound
Poisson process Xt with λ = 10 and Yk ∼ N(1, 4).

λ = 10; TT = 1; μ = 1; σ = 2;

data = RandomFunction[

CompoundPoissonProcess[λ, NormalDistribution[μ, σ]],

{0, TT}];

ListLinePlot[data, InterpolationOrder → 0, AxesLabel → {"t", "Xt"}]
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Compound Poisson processes

Example.
Suppose families migrate to Australia at a Poisson rate of λ = 15 (per
day) and that each family has 1, 2, 3 and 4 members with probabilities 1

6 ,
1
3 , 1

3 and 1
6 . What is the mean and variance of the number of migrants

arriving per week?

Solution. Suppose additionally that families migrate independently. Then
the number of migrants

Xt =
Nt∑

k=1
Yk

is the compound Poisson Process with E (Yk) = 5
2 and E (Y 2

k ) = 43
6 .

Therefore

E [X7] = 15 × 7 × 5
2 = 2621

2 ,

var(X7) = 15 × 7 × 43
6 = 7521

2 .

——————————————————————————————
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