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Continuous-time homogenous Markov chains

In this section we consider a continuous-time, homogeneous Markov
chain X; with n states and t € [0, c0).

Many results from the discrete-time case carry over to the
continuous-time case, such as ergodicity and classification of states.

Most importantly, recall from Chapter 5 the Chapman-Kolmogorov

equation
P(s+u) = P(s)P(u), s,u>0, (1)

and state probability vector calculated as
p(t+s)=PT(s)p(t), t,5>0, (2)

which are valid for both the discrete and continuous-time cases.

How can we find P(s) and simulate X;?
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Continuous-time homogenous Markov chains

The fundamental difference between discrete and continuous-time
Markov chains is that discrete-time chains are not defined between jumps
(or state changes) but continuous-time chains are.

Let X; = x; and denote the waiting (sojourn) time of state x; as
T; := min(s > 0| X¢4s # Xi)-

The waiting times themselves are RVs.

Theorem 1 (waiting times)

Let X; be a homogeneous, continuous-time Markov chain.

Then all waiting times T; are independent and have an exponential
distribution with some parameter v; > 0, i.e. T; ~ Exp(v;).

The v; are called the “intensities” or “instantaneous rates” of the chain.
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Continuous-time homogenous Markov chains

Proof.
By definition of T; we have

{Ti>s} ={Xeyu=x,0<u < s}
SO

P(Ti>v+s|Ti>v)=P(Xeyu=x,0 <u<v+5|Xepy =x,0< u < v)
=P(Xitu =x,v<u<v+sXy,=x,0<u<v)
(because of condition)
= P(Xtyu = xi,v < u<v+5|Xeyy =x) (Markov property)
= P(XHL, =x;,0 <u<s|X; =x) (homogeneity)
P(Xiyy = x,0 < u<s)
= P(T > s).
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Continuous-time homogenous Markov chains

That is, we have the memoryless property

P(T; >v+s|T;>v)=P(T; >5s),
a property only possessed by the exponential distribution (not proved).
So

P(Ti>s)=1-P(T; <5s)

=1—(1-—e"%)
(CDF of T; ~ Exp(vi))
— e—l/,'S

for 0 <1y < .
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Continuous-time homogenous Markov chains

In order to obtain the transition probability matrix

pui(s) pia(s) -+ pra(s)
P21(5) P22(5) ce P2n(5)
P(S) = (pij(s))1§;7j§n = . . . . (3)
pn1(s)  pn2(s) -+ Pan(s)
where
pii(s) = P(Xetrs = xj| Xe = x3), i,j€{1,...,n},
we first consider the jump probability matrix
P11 P12 - Pin
) P21 P22 -+ P2n
P = (pij)lgi,jgn = . . . . (4)
Pn1  Pn2 e Pnn

where
pij = P(X = x; after jumping from X = x;), i,j € {1,...,n},
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Continuous-time homogenous Markov chains

The jump probability matrix P™P contains the probabilities that apply
when a jump occurs, and can be considered analogous to the 1-step
transition probability matrix of a discrete-time chain. Note this matrix
does not depend s.

The transition probability matrix P(s) incorporates the information from
PU™MP but also takes into account the (exponential) waiting times
between jumps. Note that this matrix does depend on s.

Of course, the usual properties
0 < pji(s),pij <1, Zpu and Zp,-jzl
J
apply.

If state x; is an absorbing state, then p; =1, p; =0 for i # j and
Vi = 0.

If state x; is not an absorbing state, then p; = 0 and v; > 0.
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Continuous-time homogenous Markov chains

Define the instantaneous transition rate
aj:=vp; for i#j and a;=—-v;.

For non-absorbing states x;

J#i J#i J#i
and
djj djj
Pij = = y Vi 74‘ 0.
Vi Ej;é: dij
We also see
E a,-j: E a;j—i-a,-;:l/,-—u,-zo
J J#i

So, if we are given a; we can find v; and p;; (or vice versa).

9/44



Continuous-time homogenous Markov chains

We collect this information together into the generator matrix or
intensity matrix

a1l di2 - din
a1 dax» - axn
A= (3)1<ien =
anl an2 e ann
-1 ip12 -+ ViPin
Vop21 —V2 o 2P2p (5)
VnPn1 VnPn2 e —Vp

For absorbing states x; set v; = 0.
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Continuous-time homogenous Markov chains

Example (credit rating).
Let the possible ratings (states) be x; = AA, xo =B, x3=C, xa =D
(default) with generator matrix

—-0.06 0.03 0.02 0.01

A— 01 —-04 02 01
0.2 04 -10 04

0.0 0.0 0.0 0.0

with the rates (intensities) given per year.

Noting that state x, = D is absorbing, it follows that
0 22 a3 2u

%1 vy Vi 0 3/6 2/6 1/6
Pjump _ 27221 0 ?/223 27? 1/4 0 2/4 1/4
|z o= g 2|7 |15 2/5 0 2/5

v3 v3 v3

0 0 0 1 0 0 0 1
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Continuous-time homogenous Markov chains

BIRTH AND DEATH PROCESSES.

Consider the population of current size X; = i where the time until next
arrival A; is exponentially distributed with parameter A; and the time
until next departure D; is exponentially distributed with parameter p;.

Also suppose the RVs A; and D; are independent.

X; a called a “birth and death process”, where the parameters \; and p;
are called the birth and death rates respectively.

So X; is a continuous-time Markov chain with states x; =i, i =0,1,...,

with sojourn times
T,' = min(A,-, D,)

If A; > D; then X; enters state i — 1, i.e. Xpyp, =i—1 (i >1).
If A; < D; then X; enters state i + 1, i.e. Xepn, =i+ 1 (i >0).
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Continuous-time homogenous Markov chains

Examples.
The “Poisson process” has parameters

Ai=A>0, =0, i>0
and so has a constant arrival rate and no departures.
The “Yule process” has parameters
Ai=iA pi=0, i>1
and so has a linear arrival rate and no departures.
The process with parameters
ANi=iA+0, i>0 and pi=iu, i>1

has linear arrival and departure rates.
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Continuous-time homogenous Markov chains

Theorem 2 (birth and death process)

A birth and death process is a continuous-time homogeneous Markov
chain with exponentially distributed sojourn times T; ~ Exp(v;) having

the rates
Ao if i=0
Vi =
ANi+pp ifi>1
and the jump probabilities

Ai
Ai + i

pi
Pii—1 = ~—, i>1 and pjip1=

, i>0.
Aj + i -

Proof.
Step 1. First we show that T; ~ Exp(v;). Note that for i =0

P(To >s)=P(Ay > s)

and so Tg ~ Ag ~ Exp(Ag).

14 /44



Continuous-time homogenous Markov chains

Next observe that for i =1,2,...

P(T; > s) = P(min(A;, D;) > s) = P(A; > s,D; > s)
= P(A; > s)P(D; > s) (independence)

/ Ae” ’\de/ pie M dx

(using PDF of exponential RVs)

_ ef)\,-sef,u;s _ ef()\ﬁ»p‘;)s

00
= / ()\,' + u;)e_(’\"+“")xdx
s

and we recognise the PDF of an exponential RV, so T; ~ Exp(v;) with

Ao ifi=0
Vi = .
Ai+pi ifi>1

15/ 44



Continuous-time homogenous Markov chains

Step 2. Next we derive the jump probabilities. We have
P(A; < a,D; <d) = P(A; < a)P(D; <d) (independence)

a
:/ /\,-e—*fde/ e de—/ / e~ X e MY dydx
0 0

p,'7,',1:P(D,’<A,‘):P(0<A,'<OO,O§ D,'<A,')

) X N o i )
= Ne N puie MY dydx = ——— i>1,
/o /o Ai + pi

SO

and

Pii+1 = P(Ai < D,‘) =1- P(D,- < A’.)

P>

=1-pii-1= )\'—&-Iu-

To complete the proof we note that (obviously) po1 = 1.
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Continuous-time homogenous Markov chains

KOLMOGOROV EQUATIONS.
So, now we know how to find the probabilities p; that apply when a
jump occurs and therefore have Pi“™ introduced in (4).

But how do find the probabilities p;(s) that also incorporate the waiting
times and therefore obtain P(s) introduced in (3)?

We do so by solving Kolmogorov's differential equations.

These come in two flavours: backward and forward.
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Continuous-time homogenous Markov chains

Theorem 3 (Kolmogorov's differential equations)

Backward Equations.

d

ePi(s) = > aipi(s) + aipi(s)
P
or
iP(s) = AP(s)
ds - ’

Forward Equations.
Under some regularity conditions

d

oPu(s) = > pi(s)aig + apii(s)
Py,
or d
— P(s) = P(s)A.

ds
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Continuous-time homogenous Markov chains

Proof.
Technical so omitted.

A solution of the backward Kolmogorov equations for the case of
homogenous Markov chains with a finite number of states can be written
in the explicit form

0 sk Ak 0 AR\ °
P(s):e“‘:wkz1 1 —<l+k21k!) (6)

where [ is the identity matrix.

Then the Chapman-Kolmogorov equation (1) becomes

P(s +u) = P(s)P(u) = e**4, t,u >0,
and state probability (2) vector becomes

p(t+5) = PT(s)p(t) = e p(t). 1,520,

19/ 44



Continuous-time homogenous Markov chains

Example (credit rating continued).
Recall the generator matrix

—0.06 0.03 0.02 0.01
01 —-04 02 01
0.2 04 -10 04
0.0 0.0 00 0.0

A=

The Mathematica example below computes P(s) for various s.

AA = {{-0.06, 0.03, 0.02, 0.01}, {0.1, -0.4, 0.2, 0.1}, {0.2, 0.4, -1.0, 0.4},
{0,0,0,0}};

PP[s_] := MatrixExp[s AA];

Table[PP[s] // Chop // MatrixForm, {s, {0, 100, 1000} }]

[ B.8238099 @.88325194 8.88116929 @.971769
B.8128147 @.80164896 @.88@598834 @.0385754
2.80993054 ©.8013563 0.000487682 @.988225

e ] 2] 1.

3 3

1. 8 @ @
@ 1. & @
@ @ 1. @
@ & @ 1.

So as s — oo the probability of default goes to one!
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Continuous-time homogenous Markov chains

Example (interest rate model with two states).
Assume the interest rate process X; takes only the two states x; = 0.05
and x; = 0.06 with the generator

A <—)\ A )
I
with rates given per year (e.g. A =y =5).

The waiting times between jumps are exponentially distributed, so, for
example, the mean waiting time for the jump x; — x is % while the
variance of the waiting time for the jump x; — x7 is #

The backward equations are

d
£P1,1(5) = =Ap1,1(s) + Ap2,1(s), p12(s) =1 p1.1(s)
and
d
S P21(s) = upLa(s) — up2a(s),  p2a2(s) =1 - paa(s).
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Continuous-time homogenous Markov chains

One can check that the solutions are

A
_ —(A+u)s 1%
s) = e + —
P1.1(s) N N
and y
— " (1= e~ (tp)sy,
Paals) = H (1 e 0)
It follows that for large s
A
pLals) = s pals) =1 pu(s) = 1
and \
n
~ — =1- ~ —
p2,1(s) N+ p2.2(s) p21(s) Mt
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Continuous-time homogenous Markov chains

LIMITING PROBABILITIES.

Theorem 4 (ergodic continuous-time Markov chain)

A homogenous Markov chain X; is called ergodic if lim;_,o, p(t) exists
and this limit does not depend on the initial distribution p(0).

If a Markov chain is ergodic, then for all initial states /

o pole) = g pl) =m or - fip plt) =

so that

lim p(t+s)= tILrQO (PT(s)p(t))

t—00
becomes

AT 2AT2
™= PT(s)ﬂ':eSATTr:(I—FST-i- : (2| )

where 7 is the stationary distribution of X;.

_|_...)7-‘-
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Continuous-time homogenous Markov chains

That is, the stationary distribution can be found as the solution to

n
AT =0 subject to Zﬂ'j =1. (M)

j=t

CLASSIFICATION OF STATES.

This is the same as for the discrete-time case, with the exception that
periodicity does not apply to the continuous-time case (refer to Chapter
5).
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Compound Poisson processes

PROCESSES WITH INDEPENDENT INCREMENTS.
We begin with a general definition and proposition.

Definition 1 (process with independent increments)

A stochastic process X;, t € D, is said to possess independent increments
if any RVs X; — X; and X, — Xy are independent for any u < s < t.

Note that it is typically supposed that Xy = 0.

Proposition 1 (process with independent increments is Markov)

If a stochastic process X; has independent increments then it is a Markov
process.
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Compound Poisson processes

Proof.
For Xo =0 and any y, xq, ..., X, X

P(Xers < y| Xy, = x15 00y Xp, = Xny Xp = X)
=P(Xers — Xe <y — x| Xy, = x1,. .., X, = Xn, Xp = X)
:P(Xt+s*Xt§)’*X
[Xe, = Xo=x1 =0, X, = Xt, =x0 —x1..., Xe = Xp, = X — Xp)
(Xexs — Xt <y —x) (independent increments)
(Xews = Xe < y — x| X = x)
(Xips = Xe + X <y — x4+ x| X = x)
(

which is the Markov property.
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Compound Poisson processes

Note that if a process with independent increments X; has a discrete
distribution then

P(th = X17Xt2 = X2,... ,th = Xn)
= ’D(th = Xlasz - Xt1 =X —Xt... 7Xt,, - Xt,,_1 = Xn — Xn—l)
n
= P(Xy, = x) H P(Xy, — Xeo_y = Xk — Xk—1)-
k=2
So, all n-dimensional distributions can be expressed in terms of only one

function, the distribution of increments.

Similarly, for the case of continuous distributions we have

n

By ooy (515 oo Xn) = B (1) [ ] F =, Otk = X-1).
k=2
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Compound Poisson processes

Definition 2 (stationary and independent increments)

A stochastic process X; is said to possess stationary independent
increments if any increments X; — X; for disjoint intervals (s, t) are
independent and the distribution of X; — X; is dependent only on the
interval t —s.

Example (Wiener process).
The increments of the Wiener process

(W — We) ~ N(m(t —s),0°(t — s))
and the transition density is

1 (y—x—m(t—s))?

f(y,tlx,s) = m -

e 202(t—s)
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Compound Poisson processes

POISSON PROCESS.

Definition 3 (Counting process)

A stochastic process N;, t € [0,00), is said to be a counting process (or,
a point process) if N; represents the number of “events” that have
occurred up to time t.

Properties of N; include
N, is integer-valued;
if s <t then Ny < Ng;

for s < t, Ny — N is the number of events occurring in [s, t].

Examples of applications include
m number of telephone calls received
m number of stock trades etc

m number of jumps in a stochastic process.

29 /44



Compound Poisson processes

Denote by S, the arrival time of the n-th event and let T, be the
interarrival times, i.e. the time taken between the (n — 1)-th and n-th

events, so that
n
5,, = Z T,'.
i=1

We provide three definitions of a Poisson process.

Definition 4 (Poisson process 1)

The counting process N; with Ny = 0 is said to be a Poisson process with
intensity (or rate) A > 0 if N; has independent increments and for all
s;t>0

(As)

P(Neys — Ny = k) = e—AST, k=0,1,....

30/44



Compound Poisson processes

Definition 5 (Poisson process 2)

The counting process N; with Ny = 0 is said to be a Poisson process with
intensity (or rate) A > 0 if N, is a Markov process with

P(Ny_u,.h - Nt 2 2) = O(h)

as h — 0.

Definition 6 (Poisson process 3)

The counting process N; with Ny = 0 is said to be a Poisson process with
intensity (or rate) A > 0 if the interarrival times T, ~ Exp(\) and
independent.
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Compound Poisson processes

Theorem 5 (equivalence of Poisson process definitions)

Definitions 4, 5 and 6 are equivalent.

Proof.
Omitted.

For our purposes, Definitions 4 and 6 will be the most useful.
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Compound Poisson processes

The next proposition establishes some fundamental properties of a
Poisson process.

Proposition 2 (properties of Poisson process)

If N; is a Poisson process with rate A > 0 then the CF
on, (u) := E[e™Ne] = exp(At(e — 1))
and the MGF
My, (u) := E[e"Ne] = exp(\t(e” — 1)).
Also,

E[N;] = var(N;) = At and  cov(N, Ng) = Amin(t, s).
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Compound Poisson processes

Proof.
The proofs of the forms of ¢y, and My, are class exercises.

The CF or MGF can be used to derive the mean and variance formulae.

For the covariance property note that for s < t

cov(Ng, Ng) = cov(Ny — Ns + Ng, Ns)

cov(N; — Ng, Ns) + cov(Ns, Ns)

= cov(Ns, Ns)  (independent increments)
= var(N;s

= As.

|
<

By similar reasoning for t < s we have cov(N;, N) = At.

Combining the two cases gives the desired result.
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Compound Poisson processes

The final property we establish concerns the sum of independent Poisson
processes.

Proposition 3 (sum of independent Poisson processes)

Let Ngl) and N§2) be independent Poisson processes with rates A\; and ;.

Then Z; = Nt(l) 4 NSZ) is the Poisson process with rate A\; + \s.

Proof.
By the moment generating function of Proposition 4

E[e"?] = E[e"™ 4N = E[e™”]E[e™”]  (independence)
— e)\lt(eu—l)e)\zt(eu—l)

— e()\1+)\2)t(e”71)

which is the MGF of Poisson process with rate A\; + A,.
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Compound Poisson processes

The Mathematica example below shows a simulated path of a Poisson
process N; with A\ = 10.

A=10; TT = 1;

data = RandomFunction[PoissonProcess[], {0, TT}];

ListStepPlot[data, AxesLabel -» {"t", "N:"}]

N

0.2
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Compound Poisson processes

COMPOUND POISSON PROCESS.

Definition 7 (Compound Poisson process)

A stochastic process X; is said to be a compound Poisson process if it
can be represented as

where N; is a Poisson process with rate A and Y/ are iid RVs which are
also independent of N;.

Example (unit jump size).
Let Xo =0 and Y, =1.

Then Xt == Nt-
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Compound Poisson processes

Example (insurance company model).
Let RV Y} be claim size.

If the interarrival times T, are independent and have the exponential
distribution with parameter A > 0, then the total loss is

Ne

Xt:ZYk.

k=1

The insurance company will be ruined when the loss X; exceeds the
equity of the company for the first time.
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Compound Poisson processes

The next theorem provides the characteristic function a compound
Poisson process.

Theorem 6 (characteristic function of compound Poisson process)

A compound Poisson Process X; has independent increments and its
characteristic function is given by

ox,(u) = E[ei”Xt] — Moy (u)-1)

where oy (u) := E[eY¥].

Proof.
The independence of increments property follows the independence of
increments of a Poisson process and the independence of the Y RVs.
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Compound Poisson processes

The characteristic function

E[e™X] = E[ei”Zfil Yk} = E[E[eiuzzl; Y*|Nt]] (tower law)

. Nt
E[e'”zkzl Y“|N; = n] P(N, = n)

M

3
|
<}

E[ei“ > Yk] P(N; = n) (condition, independence)

I
2 1)

Ele ’”Yk |P(N; = n) (independence)
k=1

M

3
I
<)

M

E[e™"]"P(N; = n) (Y iid)

3
I
<}

> (At !
— et Z % = e M) (Taylor series)

n=0
_ Alov()-1).
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Compound Poisson processes

The next corollary establishes some properties of a compound Poisson
process.

Corollary 1 (properties of compound Poisson process)
If E(Y?) < oo then

E[X:] = ME[Y] and var(X;) = A\tE[Y?].

Proof.
As class exercises.
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Compound Poisson processes

The Mathematica example below shows a simulated path of a compound
Poisson process X; with A =10 and Yj ~ N(1,4).

A=10; TT=1; u=1;0=2;
data = RandomFunction[
CompoundPoissonProcess[A, NormalDistribution[u, o]],
{0, TT}1;
ListLinePlot [data, InterpolationOrder - @, AxesLabel » {"t", "X:"}]

2+
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Compound Poisson processes

Example.

Suppose families migrate to Australia at a Poisson rate of A = 15 (per
day) and that each family has 1,2,3 and 4 members with probabllltles
; 3 and 1 . What is the mean and variance of the number of m|grants
arriving per week?

Solution. Suppose additionally that families migrate independently. Then

the number of migrants
Ni
Xe=> Yk
k=1

is the compound Poisson Process with E(Y)) = 5 and E(Y2) = %

Therefore
E[X7] =15 x 7 x 5—2621
7] — 2_ 27

4 1
var(X7) =15 x 7 x g = 7525.
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