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Defintions

We begin by defining the processes we will consider in this chapter.

First is the AR(p) process, i.e. autoregressive process of order p.

Definition 1 (AR(p) process)
An AR(p) process X = (Xt)t∈Z is a weakly-stationary process described
as the solution of

Xt = c +
p∑

j=1
ϕjXt−j + Zt , t ∈ Z,

where c, ϕj ∈ R and Z = (Zt)t∈Z is a zero-mean white noise process with
variance σ2.

Note that this process is not weakly-stationary for all values of ϕj – we
will establish conditions under which it is.
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Defintions

Next is the MA(q) process, i.e. moving-average process of order q.

Definition 2 (MA(q) process)
A MA(q) process X = (Xt)t∈Z is weakly-stationary process described by

Xt = µX + Zt +
q∑

j=1
θjZt−j , t ∈ Z,

where µX , θj ∈ R and Z = (Zt)t∈Z is a zero-mean white noise process
with variance σ2.

Unlike the AR(p) process, an MA(q) process is guaranteed to be
weakly-stationary for all θj as it is finite sum of independent, zero-mean
RVs with the same variance.
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Defintions

If we combine an AR(p) and a MA(q) processes together we obtain an
ARMA(p, q) model, i.e. autoregressive-moving-average process of
order (p, q).

Definition 3 (ARMA(p, q) process)
An ARMA(p, q) process is a weakly-stationary process X = (Xt)t∈Z
described as the solution of

Xt = c +
p∑

j=1
ϕjXt−j + Zt +

q∑
j=1

θjZt−j , t ∈ Z,

where c, ϕj , θj ∈ R and Z = (Zt)t∈Z is a zero-mean white noise process
with variance σ2.

Like the AR(p) process, the ARMA(p, q) process is not weakly-stationary
for all choices of ϕj – we will establish conditions under which it is.

To obtain stationarity conditions we simplify notation by taking c = 0.
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Motivation

Autoregressive-moving average (ARMA) processes provide a sufficiently
large class of stationary processes which are popular in applications due
to calculational tractability.

Using ARMA processes for modeling, one benefits from their rich theory
and wide range of software applications.

Moreover, the framework of ARMA processes can be extended to
describe non-stationary situations (which gives ARIMA, SARIMA, etc.
process types).

For many applications, an attempt to describe historical data by way of a
stationary time series could start with an appropriate ARMA model.

Terminology. In what follows we will use the term “stationary” in place
of “weakly-stationary”.
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Motivation

Consider now AR(1) process

Xt − ϕXt−1 = Zt , t ∈ Z, (1)

with given white noise process Z = (Zt)t∈Z.

For |ϕ| < 1 there exists a stationary solution to this given by

Xt =
∞∑

j=0
ϕjZt−j , t ∈ Z, (2)

which we see can be interpreted as a MA(∞) process.

The form of this can be seen through the back-substitution

Xt = ϕXt−1 + Zt

= ϕ(ϕXt−2 + Zt−1) + Zt = ϕ2Xt−2 + ϕZt−1 + Zt

= ϕ2(ϕXt−3 + Zt−2) + ϕZt−1 + Zt = ϕ3Xt−3 + ϕ2Zt−2 + ϕZt−1 + Zt

= · · · .
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Motivation

To see that the process is stationary for |ϕ| < 1 note that

E [Xt ] = E
[ ∞∑

j=0
ϕjZt−j

]
=

∞∑
j=0

ϕjE [Zt−j ] = 0

and

cov(Xt ,Xt+h) = cov
( ∞∑

j=0
ϕjZt−j ,

∞∑
k=0

ϕkZt+h−k

)

=
∞∑

j=0

∞∑
k=0

ϕjϕk cov(Zt−j ,Zt+h−k) =
∞∑

j=0
ϕjϕj+h cov(Zt−j ,Zt−j)

= σ2
∞∑

j=0
ϕjϕj+h = σ2 ϕh

1 − ϕ2

which is a function of the time step h ∈ {0, 1, 2, . . .}.

Note that the interchange of summation and expectation/covariance
should be justified.
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Motivation

Using powers Bj , j ∈ Z, of the back-shift operator acting on each time
series Y = (Yt)t∈Z as

(BjY )t = Yt−j , t ∈ Z,

we can formally write the equation (1) and its solution X = (Xt)t∈Z from
(2) as

(1 − ϕB)X = Z , X =
∞∑

j=0
(ϕB)jZ .

This result is appealing, since formally we have

(1 − ϕB)−1 =
∞∑

j=0
(ϕB)j .

This observation shows that there could be a useful calculus of shift
operator.
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Motivation

The ARMA(p, q) process with c = 0

Xt − ϕ1Xt−1 − · · · − ϕpXt−p = Zt + θ1Zt−1 + · · · + θqZt−q (3)

can be re-written using the back-shift operator as

1Xt − (ϕ1B1X )t − · · · − (ϕpBpX )t︸ ︷︷ ︸
(ϕ(B)X)t

= 1Zt + (θ1B1Z )t + · · · + (θqBqZ )t︸ ︷︷ ︸
(θ(B)Z)t

ϕ(B)X = θ(B)Z (4)

where ϕ and θ are polynomials

ϕ(z) = 1 − ϕ1z − · · · − ϕpzp

θ(z) = 1 + θ1z + · · · + θqzq

and z ∈ C.
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Motivation

Following intuition, we may search for the solution to

ϕ(B)X = θ(B)Z

in the form
X = θ(B)

ϕ(B)Z ,

in the sense that

Xt =
∑
j∈Z

ψj(BjZ )t =
∑
j∈Z

ψjZt−j , t ∈ Z,

where the coefficients (ψj)j∈Z are obtained from the power series
expansion

θ(z)
ϕ(z) =

∑
j∈Z

ψjz j .
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Motivation

In what follows, we
introduce calculus of shift operators
address ARMA processes as stationary solutions to (3)
using shift calculus, discuss existence and uniqueness of stationary
solutions to (4).

For stationarity, the roots of the denominator ϕ(z) will be crucial in this
context.
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Filters

A linear filtering procedure assigns to a stochastic process X = (Xt)t∈Z a
new (filtered) process Y = (Yt)t∈Z as

Yt =
∑
j∈Z

ψjXt−j , t ∈ Z .

As presented, this is an infinite filter and the filtered process at time t
depends not only on all past and present values of X , but all future
values as well (we will re-visit this later).

To avoid convergence problems, we can suppose that the sum is finite,
which is the case if

#{j : ψj ̸= 0} < ∞,

i.e. if there are a finite number of terms in the filter.

It turns out that this sort of filtering makes sense also for infinite
coefficient sets and exhibits an important property: filtering of a
stationary process gives another stationary process.
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Filters

Proposition 1 (filtered stationary process)
Let X = (Xt)t∈Z be a zero-mean stationary process with covariance
function γX and suppose that filter coefficients are absolutely summable,
i.e.

∑
t∈Z |ψj | < ∞.

Then
Yt =

∑
j∈Z

ψjXt−j , t ∈ Z,

defines a zero-mean stationary process Y = (Yt)t∈Z with covariance
function

γY (h) =
∑
j∈Z

∑
k∈Z

ψjψkγX (h + j − k) h ∈ Z .

If X is white noise of variance σ2, then the covariance function is

γY (h) = σ2
∑
j∈Z

ψjψj+h h ∈ Z . (5)
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Filters

Proof.
The mean is time-constant since

E [Yt ] = E
[ ∑

j∈Z
ψjXt−j

]
=

∑
j∈Z

ψjE [Xt−j ] = 0, t ∈ Z,

as X is a zero-mean process.

The auto-covariance

cov(Yt ,Yt+h) = cov
( ∑

j∈Z
ψjXt−j ,

∑
k∈Z

ψkXt+h−k

)
=

∑
j∈Z

∑
k∈Z

ψjψk cov(Xt−j ,Xt+h−k)

=
∑
j∈Z

∑
k∈Z

ψjψkγX (h + j − k).

Thus the process Y is stationary as it’s covariance function is a weighted
sum of the covariance function of X and doesn’t depend on t. This result
can be strengthened to strictly-stationary if X is Gaussian.
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Filters

If X is white noise process with variance σ2 then

cov(Yt ,Yt+h) = cov
( ∑

j∈Z
ψjXt−j ,

∑
k∈Z

ψkXt+h−k

)
=

∑
j∈Z

∑
k∈Z

ψjψk cov(Xt−j ,Xt+h−k)

=
∑
j∈Z

ψjψj+h cov(Xt−j ,Xt−j)

= σ2
∑
j∈Z

ψjψj+h

as cov(Xt−j ,Xt+h−k) = 0 when

t − j ̸= t + h − k ⇒ k ̸= j + h

and cov(Xt−j ,Xt−j) = var(Xt−j) = σ2 otherwise.
——————————————————————————————

16 / 52



Calculus of shift operator

Consider a filter with absolutely summable filter coefficients (ψj)j∈Z and
corresponding filter function

ψ(z) =
∑
j∈Z

ψjz j

defined as a power series which converges at least on the unit circle in
the complex plane

z ∈ T := {z ∈ C : |z | = 1}.

To see the series converges (at least) on the complex unit circle note that∑
j∈Z

|ψjz j | =
∑
j∈Z

|ψj ||z j | =
∑
j∈Z

|ψj ||1| =
∑
j∈Z

|ψj | < ∞

as the coefficients (ψj)j∈Z are assumed to be absolutely summable.
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Calculus of shift operator

The action of the filter on a stationary time series X can be written as

Yt =
∑
j∈Z

ψjXt−j =
∑
j∈Z

ψj(BjX )t =
( ( ∑

j∈Z
ψjBj

)
︸ ︷︷ ︸

ψ(B)

X
)

t

= (ψ(B)X )t

where two last terms are understood symbolically.

This suggests to write the filter in terms of the filter function ψ.

This symbolic calculus is advantageous, because composition of filters
corresponds to the product of their filter functions, as shown by the next
proposition.
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Calculus of shift operator

Proposition 2 (shift calculus for composition of filters)
For any function ψ on T with absolutely summable coefficients in the
expansion

ψ(z) =
∑
j∈Z

ψjz j , z ∈ T, (6)

agree to write

(ψ(B)X )t =
∑
j∈Z

ψj(BjX )t =
∑
j∈Z

ψjXt−j , t ∈ Z, (7)

for each stationary process X = (Xt)t∈Z.

Then for another function ψ′ on T with absolutely summable coefficients

ψ′(B)
(
ψ(B)X

)
=

(
(ψ′ψ)(B)

)
X ≡

(
ψ′(B)ψ(B)

)
X .
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Calculus of shift operator

Proof.
Define the filters ψ(B), ψ′(B) and (ψ′ψ)(B) using the filter functions

ψ(z) =
∑
j∈Z

ψjz j , ψ′(z) =
∑
j∈Z

ψ′
jz j

and

(ψ′ψ)(z) ≡ ψ′(z)ψ(z) =
( ∑

j∈Z
ψ′

jz j
)( ∑

k∈Z
ψkzk

)
=

∑
j∈Z

∑
k∈Z

ψ′
jψkz jzk =

∑
l∈Z

( ∑
j+k=l

ψ′
jψk

)
︸ ︷︷ ︸

ψ′′
l

z l

which converges for each z ∈ T.

Note that with j + k = l

z jzk = (e i arg(z))j(e i arg(z))k = e i arg(z)(j+k) = e i arg(z)l = (e i arg(z))l = z l .
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Calculus of shift operator

Now, for stationary process X the composition

(
ψ′(B)(ψ(B)X )

)
t =

∑
j∈Z

ψ′
j
(
ψ(B)X

)
t−j =

∑
j∈Z

ψ′
j

( ∑
k∈Z

ψkXt−j−k

)

=
∑
j∈Z

∑
k∈Z

ψ′
jψkXt−j−k =

∑
l∈Z

( ∑
j+k=l

ψ′
jψk

)
︸ ︷︷ ︸

ψ′′
l

Xt−l

=
(
(ψ′ψ)(B)X

)
t

for all t ∈ Z.
——————————————————————————————

Exercise.
Justify the changes of summation and ordering the calculations above.

Solution. As class work.
——————————————————————————————
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Stationarity

The next theorem establishes that there is a unique stationary solution to
the ARMA(p, q) equation (3).

Theorem 1 (Stationarity)
There exists a unique stationary solution to the ARMA(p, q) equation

Xt − ϕ1Xt−1 − · · · − ϕpXt−p = Zt + θ1Zt−1 + · · · + θqZt−q

if
ϕ(z) ̸= 0 for all z ∈ T := {z ∈ C : |z | = 1}

where
ϕ(z) = 1 − ϕ1z − · · · − ϕpzp.
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Stationarity

Proof.

Existence. If ϕ has no root on the unit circle T, then

θ(z)
ϕ(z) = 1 + θ1z + · · · + θqzq

1 − ϕ1z − · · · − ϕpzp

admits a power series representation.

More precisely, there exists an r > 1 such that

θ(z)
ϕ(z) =

∑
j∈Z

ψjz j .

for all z ∈ C with r−1 < |z | < r , which is a Laurent series from complex
analysis.
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Stationarity

In particular,
θ(z)
ϕ(z) =

∑
j∈Z

ψjz j

converges absolutely for each z ∈ T and therefore∑
j∈Z

|ψjz j | < ∞,

thus the filter coefficients are absolutely summable as∑
j∈Z

|ψj | =
∑
j∈Z

|ψj ||1| =
∑
j∈Z

|ψj ||z j | =
∑
j∈Z

|ψjz j | < ∞.

Then using Proposition in 1, the process

Xt =
∑
j∈Z

ψjZt−j , t ∈ Z,

is well-defined and is stationary (the white noise process Z is stationary).
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Stationarity

According to (6) and (7) we write

Xt =
∑
j∈Z

ψjZt−j =
(
ψ(B)Z

)
t =

(
θ(B)
ϕ(B)Z

)
t

≡
(
θ

ϕ
(B)Z

)
t

using notation from Proposition 2, or

X = θ

ϕ
(B)Z .

Then using the shift calculus of Proposition 2 we have

ϕ(B)X = ϕ(B)
(
θ

ϕ
(B)Z

)
=

(
ϕ
θ

ϕ

)
(B)Z = θ(B)Z

which is the ARMA(p, q) equation (4) with parameters (ϕi)p
i=1 and

(θj)q
j=1, σ2.
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Stationarity

Uniqueness. Suppose ϕ has no root on the unit circle T and X = (Xt)t∈Z
is an arbitrary ARMA(p, q) process with parameters (ϕi)p

i=1 and (θj)q
j=1,

i.e. X is stationary and
ϕ(B)X = θ(B)Z .

Using Laurent series expansion of ϕ−1, we find

1
ϕ

(z) =
∑
j∈Z

ψjz j

converges absolutely for each z ∈ T.
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Stationarity

Now because ∑
j∈Z

|ψj | < ∞,

on z ∈ T

X = 1
ϕ

(B)
(
ϕ(B)X

)
= 1
ϕ

(B)
(
θ(B)Z

)
= θ

ϕ
(B)Z .

using the shift calculus of Proposition 2.

That is, each ARMA solution equals to θ
ϕ (B)Z and so uniqueness follows.

——————————————————————————————
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Causality and invertibility

Usually, the noise Z appears as an anonymous source of randomness,
merely used to define desirable stationary process X by applying a filter
to the noise Z giving

X = θ

ϕ
(B)Z .

In many applications, the relation between noise Z and the process X is
not of interest, since only µX and γX are relevant.

However, many arguments and calculations become easier if Z and X are
inter-related.

Useful inter-relations are causality and invertibility.
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Causality and invertibility

Consider again the ARMA equation

ϕ(B)X = θ(B)Z

with given parameters (ϕj)p
j=1 and (θj)q

j=1 and white noise Z = (Zt)t∈Z.

We know by Theorem 1 that if ϕ has no roots on the unit circle, then the
unique solution for X is

X = θ

ϕ
(B)Z .

We can also show using similar arguments that if θ has no roots on the
unit circle, then the unique solution for Z is

Z = ϕ

θ
(B)X .
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Causality and invertibility

CAUSALITY.

If ϕ has no roots on the unit disc, i.e.

ϕ(z) = 1 − ϕ1z − · · · − ϕpzp ̸= 0 for all z ∈ C and |z | ≤ 1

then the Laurent series is just the Taylor series, i.e.

θ

ϕ
(z) =

∑
j∈Z

ψjz j becomes θ

ϕ
(z) =

∞∑
j=0

ψjz j ,

and

Xt =
∞∑

j=−∞
ψj(BjZ )t becomes Xt =

∞∑
j=0

ψj(BjZ )t =
∞∑

j=0
ψjZt−j .

In this case, X is called causal with respect to Z (only past and present
values of the noise enter current process observation).
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Causality and invertibility

INVERTIBILITY.

If θ has no roots on the unit disc, i.e.

θ(z) = 1 + θ1z + · · · + θqzq ̸= 0 for all z ∈ C and |z | ≤ 1

then the Laurent series is just the Taylor series, i.e.

ϕ

θ
(z) =

∑
j∈Z

πjz j becomes ϕ

θ
(z) =

∞∑
j=0

πjz j ,

so X = θ
ϕ (B)Z =⇒ Z = ϕ

θ (B)X and

Zt =
∞∑

j=−∞
πj(BjX )t becomes

∞∑
j=0

πj(BjX )t =
∞∑

j=0
πjXt−j .

In this case, X is called invertible with respect to Z (only past and
present process values are needed to reconstruct the present noise
observation).
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Causality and invertibility

WE NEED ONLY CAUSAL PROCESSES.

An interesting insight is that causal ARMA solutions give a sufficiently
reach class of ARMA processes.

More precisely, it is possible to prove that if X is an ARMA process then
there exists an invertible ARMA process X ′ (with other parameters) but
with the same auto-covariance function γX = γX ′ .

Thus, if merely auto-covariance is of interest, then it suffices to consider
causal ARMA processes only.

For this reason, it makes sense to consider only those ARMA equations
where all roots of polynomial ϕ are outside of the unit disc.

Of course, ARMA(p, q) processes are stationary if all roots of polynomial
ϕ are outside of the unit disc.

32 / 52



Causality and invertibility

CALCULATION OF AUTOCOVARIANCE γX .

Here we consider causal ARMA(p, q) processes, i.e. those with

ϕ(z) = 1 − ϕ1z − · · · − ϕpzp ̸= 0 for all z ∈ C and |z | ≤ 1.

Under this assumption, the ARMA solution X = θ
ϕ (B)Z is obtained by

applying the linear filter (ψj)∞
j=0 from the Taylor expansion

∞∑
j=0

ψjz j = θ

ϕ
(z)

to the noise Z giving

Xt =
∞∑

j=0
ψj(BjZ )t =

∞∑
j=0

ψjZt−j , t ∈ Z .
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Causality and invertibility

Given filter (ψj)∞
j=0, we use (5) to calculate the auto-covariance as

γX (h) =
∞∑

j=0
ψjψj+hσ

2, h ∈ Z .

Thus, the main task is to determine the filter coefficients (ψj)j∈Z from

∞∑
j=0

ψjz j = θ

ϕ
(z).
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Causality and invertibility

By comparison of powers

(ψ0 + ψ1z + ψ2z2 + . . . )︸ ︷︷ ︸
θ
ϕ (z)

(1 − ϕ1z − · · · − ϕpzp)︸ ︷︷ ︸
ϕ(z)

= (1 + θ1z + · · · + θqzq)︸ ︷︷ ︸
θ(z)

we obtain

ψ0 = 1
ψ1 − ϕ1ψ0 = θ1

ψ2 − ϕ1ψ1 − ϕ2ψ0 = θ2
...

...

etc.

So for j = 1, 2, . . . , the filter coefficients can be obtained recursively using

ψj =
j∑

k=1
ϕkψj−k + θj (8)

with ψ0 = 1 and ψi = 0 when i < 0.
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Causality and invertibility

Example.

Consider an ARMA(1,1) process given by
Xt − 0.5︸︷︷︸

ϕ1

Xt−1 = Zt + 0.4︸︷︷︸
θ1

Zt−1, t ∈ Z,

with Gaussian white noise, i.e. Zt ∼ N(0, σ2) for all t ∈ Z.

The polynomial
ϕ(z) = 1 − 0.5z

has a root of 2, which is outside the unit disc |z | ≤ 1, and so the
ARMA(1,1) equation has a unique, stationary solution X that is causal
with respect to Z .

On the other hand, the polynomial
θ(z) = 1 + 0.4z

has a root of -2.25, which is outside the unit disc |z | ≤ 1, and so the
ARMA(1,1) process is also invertible.
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Causality and invertibility

The filter coefficients
∞∑

j=0
ψjz j = θ

ϕ
(z) = 1 + 0.4z

1 − 0.5z

can be calculated using (8) as

ψ0 = 1
ψ1 = ϕ1ψ0 + θ1 = 0.5 ∗ 1 + 0.4 = 0.9
ψ2 = ϕ1ψ1 + ϕ2︸︷︷︸

0

ψ0 + θ2︸︷︷︸
0

= 0.5 ∗ 0.9 = 0.45

...
...

ψj = ϕ1ψj−1︸ ︷︷ ︸
0.5j−1∗0.9

+ ϕ2︸︷︷︸
0

ψj−2 + · · · + θj︸ ︷︷ ︸
0

for j > 2

from which the auto covariance γX can be obtained.
——————————————————————————————
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Tesla example – modelling with ARMA(p, q)

Daily close.
In this example we consider the daily close price of Tesla from 2021
onwards.

A plot of this data is shown below.

2021 2022 2023 2024

0

100

200

300

400

Tesla daily close 01/01/2021-14/02/2024

38 / 52



Tesla example – modelling with ARMA(p, q)

We can use Mathematica to fit an ARMA(p, q) model and Mathematica
will determine p, q and estimate the constant c and lag coefficients.

The “best fitting” model as selected by Mathematica is the ARMA(2,1)

Xt = 5.09583 + 0.433234Xt−1 + 0.545994Xt−2 + Zt + 0.573865Zt−1,

with the variance of the noise process var(Zt) ≈ 85.4952.

Warning from empirical stock data.
ARMA models should only be fitted to stationary time series, but there is
strong evidence that stock price data is not stationary.

Here we should check for potential unit roots (use Dickey-Fuller test or
the like).
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Tesla example – modelling with ARMA(p, q)

Daily log-return.
Now consider the daily log-returns of Tesla for 2021 onwards.

A plot of this return data is below.
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Tesla example – modelling with ARMA(p, q)

The best fitting ARMA(p, q) model is the white noise ARMA(0,0)

Xt = −0.000324269 + Zt

with the variance of the noise process var(Zt) ≈ 0.00135682.

Warning from empirical stock return data.
There is strong evidence that stock log-return data contains negligible
covariance structure, suggesting our model is somewhat appropriate.

However, there is also strong evidence that (conditional) variance is not
constant (perhaps use a GARCH process).
——————————————————————————————
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Non-stationarity and differencing

In many situations the data we seek to model will not be stationary (e.g.
stock price data).

In this situation that are some techniques that can be applied to
transform the data so that the transformed data is stationary (and so can
then be modelled with ARMA(p, q) processes as discussed before).

We illustrate these ideas in the context of time series data with a
deterministic trend component (which can be extended to cover
seasonality and more complex models as well).
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Non-stationarity and differencing

DIFFERENCING TO OBTAIN STATIONARITY.

Consider the model for X = (Xt)t∈Z given by

Xt = mt + Zt , t ∈ Z,

with m = (mt)t∈Z deterministic and Z = (Zt)t∈Z white noise, so that X
is only stationary if mt=0.
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Non-stationarity and differencing

Linear trend.
If

mt = c0 + c1t

then

(1 − B)mt = mt − mt−1 = c0 + c1t −
(
c0 + c1(t − 1)

)
= c1

and we see that the linear trend has been eliminated so the process

(1 − B)Xt = c1 + (1 − B)Zt

is stationary (differencing works like differentiation).

The original process X is called I(1) or integrated of order 1, i.e. X
required first-order differencing to obtain a stationary process.
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Non-stationarity and differencing

Quadratic trend.
If

mt = c0 + c1t + c2t2

then
(1 − B)2mt = (1 − 2B + B2)mt = mt − 2mt−1 + mt−2

= c0 + c1t + c2t2 − 2
(
c0 + c1(t − 1) + c2(t − 1)2)

+
(
c0 + c1(t − 2) + c2(t − 2)2)

= 2c2

and we see that the quadratic trend has been eliminated so the process
(1 − B)2Xt = 2c2 + (1 − B)2Zt

is stationary (differencing works like differentiation).

The original process X is called I(2) or integrated of order 2, i.e. X
required second-order differencing to obtain a stationary process.

This idea can be extended to higher order polynomial drift.
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Non-stationarity and differencing

Example.
Consider the I(2) model with polynomial drift given by

Xt = 0.002t + 0.0003t2 + Zt

with Zt ∼ N(0, 1) for t ∈ {0, 1, . . . , 250} and X0 = 0.

50 100 150 200 250
t

5

10

15

20

Xt
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Non-stationarity and differencing

After differencing twice we have the stationary model

(1 − B)2Xt = 0.0006 + (1 − B)2Zt .

50 100 150 200 250
t

-5

5

(1-B)2Xt

——————————————————————————————
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Non-stationarity and differencing

In some situations, the differencing procedure can used to obtain an
ARMA(p, q) process.

The original, integrated process is called an ARIMA(p, d , q), where d
refers to the order of differencing required to obtain stationarrity.

Definition 4 (ARIMA(p, d , q) process)
An ARIMA(p, d , q) process X = (Xt)t∈Z is described as

(
1 −

p∑
j=1

ϕjBj
)

(1 − B)dXt = c +
(

1 +
q∑

j=1
θjBj

)
Zt , t ∈ Z,

where (1 − B)dX = is an ARMA(p, q) process, d refers to the order of
differencing, c, ϕj , θj ∈ R and Z = (Zt)t∈Z is a zero-mean white noise
process with variance σ2.
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Non-stationarity and differencing

Notice that the ARIMA(p, d , q) process has an ARMA(p + d , q) style
equation, but is not stationary as it has d unit roots.

The ARIMA(p, d , q) process X is I(d), i.e. integrated order d , while the
differenced process

Y = (1 − B)dX
is an ARMA(p, q).

That is, the process Y = (Yt)t∈Z is the solution of(
1 −

p∑
j=1

ϕjBj
)

Yt = c +
(

1 +
q∑

j=1
θjBj

)
Zt , t ∈ Z,

where the polynomial

ϕ(z) = 1 − ϕ1z − · · · − ϕpzp.

satisfies
ϕ(z) ̸= 0 for all z ∈ T := {z ∈ C : |z | = 1}
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Tesla example – modelling with ARIMA(p, d , q)

Daily close.
Recall the close price of Tesla for 2021 onwards for which we fitted an
ARMA(p, q) model.
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Tesla daily close 01/01/2021-14/02/2024
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Tesla example – modelling with ARIMA(p, d , q)

Now use Mathematica to fit an ARIMA(p, d , q) model.

The ARIMA(0,1,0) model becomes just an ARMA(0,0) model on the
differenced data (order 1), i.e. the white noise

X ′
t = (1 − B)Xt = −0.0696628 + Zt

with the variance of the noise process var(Zt) ≈ 85.9329.
——————————————————————————————
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