UTS

Stochastic Processes and Financial Mathematics (37363)

Lab/Tutorial 5

This lab is not assessed.

Question 1. MC with variance reduction

Consider again the integral from last week

$$G = E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx = 18e^{-1/2} - 60e^{-4}$$

where

$$g(x) = 21xe^{-x/2}$$

and

$$f_X(x) = \frac{1}{7}I(1 \le x \le 8)$$

is the density of $X \sim U(1,8)$,

(a) Using the control variate $q(x) = \sqrt{x}$ and $n = 10^5$, use R to calculate the Monte Carlo estimate

 $\tilde{G}_n = G_n - a^*(Q_n - Q)$

where

$$G_n = \frac{1}{n} \sum_{k=1}^n g(X_k),$$
$$Q_n = \frac{1}{n} \sum_{k=1}^n q(X_k),$$
$$Q = E[q(X)].$$

In calculating a^* to minimise $var(\tilde{G}_n)$ use sample statistics. Also, calculate the sample estimate of the standard error $\sqrt{var(\tilde{G}_n)}$.

Hint 1. To calculate a^* use the sample estimates of var(q(X)) and cov(g(X), q(X)).

(b) Using the antithetic variate h(X) = g(2E[X] - X) and $n = 10^5$, use R to calculate the Monte Carlo estimate

$$\widehat{G}_n = \frac{1}{2n} \sum_{k=1}^n (g(X_k) + h(X_k)).$$

Also calculate the sample estimate of $\sqrt{\operatorname{var}(\widehat{G}_n)}$.

(c) Without using Mathematica or the like, show that $(2E[X] - X) \sim U(1,8)$ where $X \sim U(1,8)$.

Hint 2. Use characteristic function/moment generating function.

Question 2. Generating RVs

Let the RV *X* have the density function

$$f_X(x) = \frac{24}{(3x+2)^3}$$
, $x \ge 0$.

~ .

(a) Find the inverse distribution function F_X^{-1} of X.

Hint 1. Find the distribution function

$$F_X(x) = \int_{-\infty}^x f_X(u) du.$$

Hint 2. When deriving inverse distribution function F_X^{-1} you will find two candidate solutions, but only one of these satisfies $x \ge 0$.

(b) Using the inverse transformation method and the results from (a), use R to generate a sample $X_k \sim X, k \in \{1, 2, ..., 10^5\}$, construct a histogram of these simulated RVs and over the top of the histogram superimpose the PDF f_X .

Hint 3. Use the R functions runif and sapply to generate sample, R function hist to construct the histogram and R function curve to superimpose the PDF.

Question 3. TNC for Gaussian process

Let X_t , $t \ge 0$, be a Gaussian process with $E[X_t] = -t^2$ and covariance function

$$Q(s,t) = \operatorname{cov}(X_s, X_t) = e^{-4|t-s|} \cos\left(\frac{\pi}{2}|t-s|\right)$$

for $0 \le s \le t$.

(a) Find the density and characteristic function of X_2 .

(b) Find $E\left[\begin{pmatrix} X_3\\ X_5 \end{pmatrix} | X_1\right]$.

(c) Find the conditional autocovariance

$$\operatorname{cov}\left(\binom{X_3}{X_5}, \binom{X_3}{X_5}|X_1\right) = E\left[\left(\binom{X_3}{X_5} - E\left[\binom{X_3}{X_5}|X_1\right]\right)\left(\binom{X_3}{X_5} - E\left[\binom{X_3}{X_5}|X_1\right]\right)^T|X_1\right]$$