37335 - Differential Equations


Introduction

Basic ODEs

See M1

Bernoulli equation

\( y'+q_1 (x) y= q_2 (x) y^{n} \)

Riccati equation

\( q_1 (x)y' +q_2 (x)y + q_3 (x)y^{2}= q_4 (x) \)

Nonlinear superposition of Riccati solutions

\(y_4 = \frac{y_1 (y_3 - y_2) + a y_2 (y_1 -y_3)}{y_3 -y_2 + a(y_1 - y_3)}\)

Exact equation

\( P(x,y) dx + Q(x,y)dy = 0 \)

\( y' = \frac{P(x,y)}{Q(x,y)} \)

With conservative function

\( P(x,y) dx + Q(x,y)dy = 0 \land \frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} \implies \exists F(x,y) ( Q = \frac{\partial F}{\partial y} \land P = \frac{\partial F}{ \partial y} ) \land y(x) : F(x,y)=C \text{ satisfies the DE}\)

With homogeneous functions of same degree

\(P,Q \text{ are homogenous of same degree } \implies y=xv(x) \text{ makes ODE separable} \)

Notice how this substitution abuses homogeneity to cancell out the dependent variable \(x\)

Method of undetermined coefficients

Method of forming an ansatz to reduce differential equations into algebraic equations.

\(g(x)\)\(y(x)\)
\(ke^{ax}\)\(Ce^{ax}\)
\(k \sin (ax)\)\(K \cos (ax) + M \sin (ax)\)
\(k x^n\)\( \sum^{n}_{i=0} K_i x^i \)

Differential operator

Unary operator (function) defined in terms of functions and differentials

\( \sum^{n}_{i=1} a_i y^{(i)} = 0 \land \text{dim}(F)=n \land \forall f \in F ( \sum^{n}_{i=1} a_i f^{(i)}=0 ) \implies y(x)= \sum^{n}_{i=1} c_i f_{i}(x) \text{ is the general solution} \)

Second order DE

Picard's theorem

Wronskian Wronskiano ロンスキアン

Function \(W\) which is the Determinant of the matrix where each column is a vector with a solution to a linear DE and its \(n-1\) derivatives.

\(W(\textbf{y}) = \begin{vmatrix} y_1 & y_2 & \cdots & y_n \\ y'_1 & y'_2 & \cdots & y'_n \\ \vdots & \vdots & \ddots & \vdots \\ y^{(n-1)}_{1} & y^{(n-1)}_{2} & \cdots & y^{(n-1)}_{n} \end{vmatrix}\)

Properties

Abel's formula

\(y_1,y_2 \text{ satisfy } y'' + q_1 (x) y' + q_2 (x) y = 0 \implies W(y_1 , y_2) = K_{12}e^{-\int q_1 (x) dx}\)

Corollary

\(y_1 \text{ satisfies } y'' + q_1 (x) y' + q_2 (x) y = 0 \land \neg ( \forall x [y_1(x)=0] ) \implies y_2 = y_1 \int \frac{e^{-\int q_1 (x) dx}}{y_1 (x)^2} dx \text{ satisfies } y'' + q_1 (x) y' + q_2 (x) y = 0 \land y_1 , y_2 \text{ are linearly independent} \)

Variation of parameters

Assuming the ansatz \(y(x) = u(x)y_1(x) + v(x) y_2 (x)\) and \(u' y_1 + v' y_2 = 0\)

Second order linear, homogeneous equations

\(y'' + q_1 (x) y' + q_2 (x) y = 0\)

Second order Cauchy-Euler equation

Second order linear equations

\(y'' + q_1 (x) y' + q_2 (x) y = R (x) \)

Series methods

Series method

For differential equations such that \(y^{(n)} + \sum q_k (x) y^{(k)} = 0 \land q_k \text{ are analytic on }I \land 0 \in I\), solutions are always analytic and hence has a Taylor series representation and hence a power series representation. This is due to considering the DE on a complex neighborhood and by noting that holomorphic functions are analytic, see Complex Analysis

Ordinary point

\(x_0 \text{ is an ordinary point of } \sum q_n (x) y^{n} (x) = 0 \iff \forall k \in \{0,1,..,n\}a_k \text{ is analytic at }x_0)\)

\( \prod^{n}_{k=1} 2k = 2^n n!\)

\( \prod^{n}_{k=1} (2k-1) = \frac{(2n-1)!}{2^(n-1) (n-1)!}\)

Singular point

\(x_0 \text{ is a singular point of } \sum q_n (x) y^{n} (x) = 0 \iff \neg [ x_0 \text{ is a singular point of } \sum q_n (x) y^{n} (x) = 0]\)

All coefficient function analytic at a point means all DEs solutions taylor series equal function itself

Airy function

Linearly independent solutions to the ODE \(y'' -xy =0\) (Airy equation)

First kind

\(\text{Ai}(x) = \frac{3^{-\frac{2}{3}}}{\Gamma (\frac{2}{3})} [ 1 + \sum^{\infty}_{n=1} \frac{\prod^{n}_{k=1}(3k-2)}{(3n)!}x^{3n} ] - \frac{3^{-\frac{1}{3}}}{\Gamma (\frac{1}{3})} [ x + \sum^{\infty}_{n=1} \frac{\prod^{n}_{k=1}(3k-1)}{(3n+1)!}x^{3n+1} ] \)

\(\text{Ai}(x) = \frac{1}{\pi} \int^{\infty}_{0} \cos ( \frac{t^3}{3} +xt)dt\)

Second kind

\(\text{Bi}(x) = \sqrt{3} [ \frac{3^{-\frac{2}{3}}}{\Gamma (\frac{2}{3})} [ 1 + \sum^{\infty}_{n=1} \frac{\prod^{n}_{k=1}(3k-2)}{(3n)!}x^{3n} ] + \frac{3^{-\frac{1}{3}}}{\Gamma (\frac{1}{3})} [ x + \sum^{\infty}_{n=1} \frac{\prod^{n}_{k=1}(3k-1)}{(3n+1)!}x^{3n+1} ] ] \)

\(\text{Bi}(x) = \frac{1}{\pi} \int^{\infty}_{0} [ \exp ( -\frac{t^3}{3} +xt) + \sin ( \frac{t^3}{3} +xt ) ] dt\)

Regular singular point

Method of Frobenius

Series method variant when singularity at 0

Single solution for \(s\)

\(y'' + q_1 (x) y' + q_2 (x) y = 0\)

\( s_1 \text{ is the only value of} s \text{ and produces solution } y_1(x) \implies \)

\(y_2(x) = y_1 (x) \ln (x) + x^{s_1} \sum^{\infty}_{n=1}a'_n (s_1)x^n\)

\(s_1 -s_2 \in \mathbb{Z}\)

\(y'' + q_1 (x) y' + q_2 (x) y = 0\)

\( s_1 -s_2 \in \mathbb{Z} \land s_1 \text{ produces solution } y_1(x) \implies \)

\(y_2(x) = \frac{b_N}{a_0}y_1 (x) \ln (x) + x^{s_2} \sum^{\infty}_{n=0}b'_n (s_2)x^n\)

\( b_n = (s-s_2) a_n( s) \)

Bessel functions

Bessel function

Linearly independent solutions to the ODE \( x^2 y'' + x y' + (x^2 - \alpha^2) y = 0 \) (Bessel equation)

First kind

\( J_{\alpha} (x) = \sum^{\infty}_{k=0} \frac{(-1)^k }{k! \Gamma (k + \alpha + 1)}(\frac{x}{2} )^{2k+\alpha} \)

\( J_{n} (x) = \frac{1}{\pi} \int^{\pi}_{0} \cos(nt - x \sin t)dt\)

\(\alpha \notin \mathbb{Z} \implies J_{\alpha} , J_{-\alpha} \text{ are linearly independent solutions to Bessel equation}\)

\( n \in \mathbb{Z} \implies J_{-n}(x) = (-1)^n J_{n} (x) \)

Second kind

\( Y_{n} (x) = \frac{2}{\pi} [ J_{n}(x)(\gamma + \ln( \frac{x}{2}) ) - \frac{1}{2}\sum^{n-1}_{k=0}\frac{(n-k-1)!(\frac{x}{2})^{2k-n}}{k!} - \frac{1}{2} \sum^{\infty}_{k=0} \frac{(-1)^k [H_k +H_{k+n}](\frac{x}{2})^{2k+n}}{k! (k+n)!} ]\)

\( Y_{\alpha} (x) = \frac{J_{\alpha}(x) \cos ( \alpha x) - J_{-\alpha}(x)}{\sin ( \alpha x)} \)

\(\alpha \notin \mathbb{Z} \implies J_{\alpha} , Y_{\alpha} \text{ are linearly independent solutions to Bessel equation}\)

Modified Bessel function

Linearly independent solutions to the ODE \( x^2 y'' + x y' + (x^2 + \alpha^2) y = 0 \) (Modified Bessel equation)

First kind

\(I_{\alpha}(x) = \sum^{\infty}_{k=0} \frac{1}{k! \Gamma (k+\alpha+1)} (\frac{x}{2})^{2k+\alpha}\)

\( x^2 \frac{d^2 y}{dx^2} + x \frac{d y}{dx} - (x^2 + \alpha^2) y = 0 \) has general solution \(y(x) = c_1 I_{\alpha}(x) + c_2 I_{-\alpha}(x)\)

\(J_{\alpha} (ix) = i^{\alpha}I_{\alpha}(x)\)

\(\alpha \notin \mathbb{Z} \implies I_{\alpha} , I_{-\alpha} \text{ are linearly independent solutions to modified Bessel equation}\)

Second kind

\(K_{n}(x)\)

\(K_{\alpha}(x) = \frac{\pi}{2} \frac{I_{-\alpha}(x)- I_{\alpha}(x)}{\sin \alpha \pi}\)

\( n \in \mathbb{Z} \implies I_{n} , K_{n} \text{ are linearly independent solutions to modified Bessel equation}\)

Digamma function

\(\psi (z) = \frac{d}{dz} \ln \Gamma (z) = \frac{\Gamma' (z)}{\Gamma (z)} \)

Bessel function substitution method

Laplace transforms

Heaviside step function

The characteristic function of real numbers greater than or equal to 0, \(\chi_{\mathbb{R}_{+}}\), it serves useful for the Laplace inversion of function with a factor \(e^{-sa}\)

\(H(t) = \begin{cases} 1 & t \geq 0 \\ 0 & t \lt 0 \end{cases}\)

Laplace transform

Integral transform on \((0,\infty)\) with kernel \(e^{-st}\)

\( \displaystyle \mathcal{L} \{ f \} (s) = \int^{\infty}_{0} f(t) e^{-st} dt \)

Properties

Table of Laplace transforms

\(f(t)\)\(\mathcal{L}\{f\}(s)\)
\(t^n\)\( \frac{\Gamma (n +1 )}{s^{n+1}}\)
\(e^{-at}\)\( \frac{1}{s+a}\)
\(\sin (at)\)\( \frac{a}{s^2 + a^2}\)
\(\cos (at)\)\( \frac{s}{s^2 + a^2} \)
\( J_0 (t)\)\( \frac{1}{\sqrt{1 +s^2}} \)

Inverse Laplace transform

Since a property of Laplace transforms is that two functions with the same transform must be equal almost everywhere, Laplace transforms are unique and hence invertible

\( \mathcal{L}^{-1} \{ \mathcal{L}\{f\} \} = f \)

Properties

\( \mathcal{L}^{-1} \{ af+bg \} = a \mathcal{L}^{-1}\{f\} + b \mathcal{L}^{-1}\{g\} \)

Inversion by series method

Convert the Laplace transform into a series, use linearity of inverse Laplace operator to resolve each term directly

Convolution theorem (Laplace transform)

\(\mathcal{L}\{f * g\}(s) = \mathcal{L}\{f\}(s) \mathcal{L}\{g\}(s)\)

Laplace transform method

Confluent hypergeometric functions

Linearly independent solutions to the ODE \(zw''+(b-z)w'-aw=0\) (Kummer's equation)

First kind

\(M(a,b,z)= \sum^{\infty}_{n=0} \frac{a^{(n)} z^n }{ b^{(n)} n! }\)

Second kind

\(U(a,b,z)\)

Fourier series

Separation of variables

Applying the ansatz \(f(x,y)=X(x)Y(y) \) to reduce a PDE to ODEs.

This works when the partial derivatives are known to reduce to constants rather than more complex functions.

Fourier series

See Lebesgue Integration and Fourier Analysis

Parseval's theorem

See Lebesgue Integration and Fourier Analysis

Riemann-Lebesgue lemma

See Lebesgue Integration and Fourier Analysis

Maximum principle

Principle that functions harmonic on a closure have their maximum on the boundary of the neighborhood

\(\forall \omega \in \Omega \subset \mathbb{R}^n [ \nabla^2 f(\omega) ] = 0 \implies \text{argmax}_{\omega \in \Omega} \{ f(\omega): \omega \in \Omega\} \in \partial \omega\)

Unique solutions of Dirichlet problem on Laplace equation

Harnack's theorem