37363 - Stochastic Processes and Financial Mathematics


Here we will redefine the environment in which we understant aspects of probability theory.

Measure theory of probability

Moment generating function

Generating function related to an RV (assuming it exists)

\(M_X (r) = \text{E}(e^{rX}) \)

Characteristic function

Generating function that exists for all RVs

\(\varphi_X (r) = \text{E}(e^{irX}) \)

\( \text{E}(X^{k}) = \frac{1}{i^k} \varphi_{X}^{(k)}(0) \)

Moment generating function

\( M_{\textbf{x}} ( \textbf{u}) = \text{E}( e^{\textbf{u} \cdot \textbf{x}} ) \)

Characteristic function

\( \varphi_{\textbf{x}} ( \textbf{u}) = \text{E}( e^{i\textbf{u} \cdot \textbf{x}} ) \)

Multivariable

Random matrix (Matrix RV)

On a probability space \( (\Omega, \mathcal{F}, \text{Pr}) \),

\( \textbf{X} = \begin{bmatrix} X_{1,1} & X_{1,2} & \cdots & X_{1,n} \\ X_{2,1} & X_{2,2} & \cdots & X_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ X_{m,1} & X_{m,2} & \cdots & X_{m,n} \end{bmatrix}\)

Conditional expectation is best mean squared estimator

\(\text{E}(X^2) \lt \infty \implies \min_{g} ( \text{E} ( [ X - g(Y) ]^2)) = \text{E}(X|Y) \)

Joint normal distribution

\( \textbf{x} \sim \text{N}(\textbf{m} , \textbf{L}\textbf{L}^{T} ) \iff \textbf{x} = \textbf{m} + \textbf{L}\boldsymbol{\xi}\)

\( \textbf{x} \sim \text{N}(\textbf{m} , \textbf{L}\textbf{L}^{T} ) \iff M_\textbf{x} (\textbf{u}) = e^{\textbf{m} \cdot \textbf{u} + \frac{1}{2}\textbf{u} \cdot \textbf{Q}\textbf{u} } \)

\( \mathbf{x} \sim \text{N}(\textbf{m} , \textbf{L}\textbf{L}^{T} ) \iff \varphi_\textbf{x} (\textbf{u}) = e^{ i\textbf{m} \cdot \textbf{u} - \frac{1}{2}\textbf{u} \cdot \textbf{Q}\textbf{u} } \)

Properties

Theorem on normal correlation

\(\textbf{x},\textbf{y} \text{ are Gaussian vector RVs} \land \text{cov}(\textbf{x},\textbf{y}) \text{ is positive definite} \implies\)

Convergence in probabilty

\( \text{plim}_{n \to \infty} X_n = X \iff \forall \varepsilon \in \mathbb{R}_{+} \setminus \{0\}[ \lim_{n \to \infty} \text{Pr}( |X_n -X| \geq \varepsilon ) = 0 ] \)

\( \text{plim}_{n \to \infty} X_n = X \iff \forall \varepsilon \in \mathbb{R}_{+} \setminus \{0\} [ \lim_{n \to \infty} \text{Pr}( |X_n -X| \lt \varepsilon ) = 1 ] \)

Almost sure convergence

\( \lim_{n \to \infty} X_n = X \text{ almost surely }\iff \text{Pr}( \lim_{n \to \infty} X_n = X ) = 1 \)

Convergence in mean square

\( \lim_{n \to \infty} X_n = X \text{ in mean square } \iff \lim_{n \to \infty} \text{E}(|X_n - x|^2) = 0 \)

Monte-Carlo integration

Monte-Carlo integration

See MS

Crude Monte-Carlo estimator (Crude MC estimator)

MC estimator that uses LLN to form a basic estimator of \(\text{E}(f(X))\)

\(F_n = \frac{1}{n}\sum^{n}_{i=1} f(x_i)\)

Properties

Control variate MC estimator

MC estimator that uses a control variate to minimize variance of the estimator (leading to higher accuracy)

\( G_n = F_n + a(Q_n - Q) \)

Properties

Optimizing \(a\)

By considering \(\frac{d}{da}[\text{Var}(G_n)]=0\)

\( \text{arg min}_{a \in \mathbb{R} } [ \text{Var}(F_n +a(Q_n -Q)) ] = -\frac{\text{cov}(f(U),q(U))}{\text{Var}(q(U))}\)

When choosing such an optimized \(a\), the variance of the optimized control variate estimator can be shown to be

\( \text{Var}(G_n) = \frac{1 - \rho_{f(U),q(U)}^2 }{n}\text{Var}(F_n)\)

Since \( 1 - \rho_{f(U),q(U)}^2 \in [0,1] \), this allows for the variance to be reduced!

Antithetic variate MC estimator

MC estimator that employs an crude MC estimator for the expectation of a second identically distributed RV that has negative covariance with the first RV; this condition reduces the variance

\( G_n = \frac{F_{1,n} + F_{2,n}}{2}\)

\( \text{cov}( f (X) , g (Y) ) \lt 0 \)

\( X \sim Y \)

Properties

Box-Muller method

Se Mathematical stats

Stochastic processes

Stochastic process (SP)

Collection of scalar RVs indexed by time On a probability space \( (\Omega, \mathcal{F}, \text{Pr}) \)

\(X : D \times \Omega \to R\)

\( ( X_{t} )_{t \in D} = X(t,\omega)\)

Finite Dimensional Distributions (FDD)

\(F_{X_{t_1} , \cdots , X_{t_n}} (\textbf{x}) = \text{Pr}( \bigwedge^{n}_{i=1} X_{t_i} \leq x_i )\)

\( \lim_{x_1 \to \infty} F_{X_{t_1} , \cdots , X_{t_n}} (x_1 , \cdots , x_n) = F_{X_{t_2} , \cdots , X_{t_n}} (x_2 , \cdots , x_n) )\)

\( \lim_{x_n \to \infty} F_{X_{t_1} , \cdots , X_{t_n}} (x_1 , \cdots , x_n) = F_{X_{t_1} , \cdots , X_{t_{n-1}}} (x_1 , \cdots , x_{n-1}) )\)

Gaussian process

\( (X_t) \text{ is a Gaussian process } \iff \textbf{x} \text{ is joint Gaussian}\)

\( (X_t) \text{ is a Gaussian process } \iff \textbf{x} \sim \text{N}( \textbf{m} , \textbf{Q} ) \)

Wiener process (WP)

Also called a Brownian motion from a physical perspective

\( (W_t), t \in [0,\infty] \text{ is a Wiener process } \iff (W_t) \text{ is a Gaussian process }\land \)

Standard Wiener process

\( (W_t) \text{ is a standard Brownian Motion} \iff (W_t) \text{ is a Gaussian process }\land \)

Properties

Kolmogorov's criterion

\( X : [0,T] \times \Omega \to \mathbb{R} \text{ is an SP} \land \exists \alpha,\varepsilon \gt 0 [ \forall u,t \in [0,T] ( \text{E}(|X_t - X_u|^{\alpha}) \leq c(t-u)^{1+\varepsilon} ] \implies \text{ is Hölder continuous of order } h \lt \frac{\varepsilon}{\alpha}\)

Corollary

\( (B_t) \text{ is a standard Wiener process} \implies (B_t) \text{ is Hölder continuous of order } h \lt \frac{1}{4} \)

Nondifferentiability of Wiener processes

\(\forall t_0 [ (B_t) \text{ is not differentiable at }t_0 ] \)

Fractional Brownian motion (fBm)

Variant of brownian motion such that the Hurst exponent can introduce correlation between the indexed scalar RVs

\( (B^{H}_t), t \in [0,\infty] \text{ is a fractional Brownian motion with Hurst exponent } H \iff (B^{H}_t) \text{ is a Gaussian process }\land \)

Properties

Standard Brownian bridge

Variant of brownian motion such that it ititiates and ends with a value 0 (hence why it is a 'bridge')

\( (B^{b}_t), t \in [0,\infty] \text{ is a standard Brownian Bridge} \iff (B^{b}_t) \text{ is a Gaussian process }\land \)

Properties

Strictly Stationary SP

\( (X_t) \text{ is strictly stationary } \iff \forall n \in \mathbb{N} \)

\(\forall t_i \in D [ F_{X_{t_1} , \cdots , X_{t_n}} (x_1 , \cdots , x_n) = F_{X_{t_1 + h} , \cdots , X_{t_n + h}} (x_1 , \cdots , x_n) ] \)

Weakly Stationary SP

\( (X_t) \text{ is weakly stationary } \iff \text{E}(X_t)=c \land \text{cov}(X_t , X_{t+h}) = q(h)\)

Markov processes

Markov process

\( (X_t) \text{ is a Markov process } \iff \forall t_i [ \text{Pr}(X_{t_n +s} \leq y | \bigwedge^{n-1}_{i=1} X_{t_i} = x_i ) = \text{Pr}( X_{t_n+s} \leq y | X_{t_{n-1}} = x_{n-1} ) ] \)

\( \text{E}(e^{i u X_{t+s}} | X_{t_1}, ... , X_{t_n} ) = \text{E}(e^{i u X_{t+s}} | X_{t_n} ) \)

Homogeneous transition probabilites occur when \(\text{Pr}(X_{t+s} | X_t = x)\) is independetn of \(t\)

Discrete Markov process

\( X_{t} = g_{t-1}(X_{n-1}, Y_{t}) \)

Markov chain

\( (X_t) \text{ is a Markov chain} \iff (X_t) \text{ is a Markov process } \land \text{im}(X_t) \text{ is countable}\)

Homogeneous Markov chain

Stationary Markov chain, Markov chain such that conditional probability of \(X_{t+h} | X_{t}\) is totally dependent on \(h\)

Gaussian-Markov criteria

\( (X_t) \text{ is a Gaussian process } \implies (X_t) \text{ is a Markov process } \iff \text{E}(X_{t_3} | X_{t_1} , X_{t_2}) = \text{E}(X_{t_3} | X_{t_2}) \lor \text{cov}(X_{t_1},X_{t_2}) \text{cov}(X_{t_2},X_{t_3}) = \text{cov}(X_{t_1},X_{t_3}) \text{cov}(X_{t_2},X_{t_2}) \)

Continuous stationary Gaussian-Markov covariance function

\( \text{cov}(X_{t}, X_{t+h}) = \text{Var}(X_t) e^{-\alpha |h|}\)

Chapman-Kolomgorov equation

\( (X_t) \text{ is a continuous Markov process } \implies \)

\(f(x_1 ,t_1 ; \cdots ; x_n , t_n) = f(x_1,t_1) \prod^{n}_{i=2} f(x_i , t_i | x_{i-1} , t_{i-1}) \)

\( f(x_3 , t_3 | x_1 , t_1 ) = \int^{\infty}_{-\infty} f(x_2 , t_2 | x_1 , t_1) f(x_3 , t_3 | x_2 , t_2) dx_2\)

Markov chain

Transition density function (TDF)

CPDF of a Markov process \( (X_t) \)

\(f_{X}(y,s|x,t)\)

Waiting time

Scalar RV \(T_i\) representing the time taken for a continuous-time Markov chain to change its state starting from time \(t\), where \(X_t =x_i\) is realized

\(T_i = \min \{ s \gt 0 : X_{t+s} \neq x_i \} \)

\((X_{t}) \text{ is a homogeneous continuous-time Markov chain } \implies T_i \sim \text{exp}(\nu_i) \)

\(\nu_i \geq 0 \text{ is the intensity of } T_i \)

Jump matrix

Matrix denoting probability of which state a continuous-time Markov chain jumps to next, regardless of waiting time

\(\textbf{P}^{\text{jump}}\)

\( p^{\text{jump}}_{ij} = \text{Pr}(X_{t+T_i} = x_j)\)

\( \sum_{j} p^{\text{jump}}_{ij} =1\)

\( x_i \text{ is an absorbing state } \implies p^{\text{jump}}_{ij} = \delta_{ij} \)

\( x_i \text{ is not an absorbing state } \implies p^{\text{jump}}_{ii} = 0 \)

Generator matrix

Matrix denoting probability of which state a continuous-time Markov chain jumps to next, regardless of waiting time

\(\textbf{A}\)

\( x_i \text{ is not absorbing } \implies a_{ij} = \begin{cases} \nu_i p^{\text{jump}}_{ij} i\neq j \\ -\nu_i & i=j \end{cases} \)

\( x_i \text{ is absorbing } \implies \nu_i = 0 \)

Birth-Death Process

\((X_t) \text{ is a Birth-Death process } \iff\)

\(D_i \sim \text{exp}(\mu_i ) \) is the departure waiting time

\(A_i \sim \text{exp}(\lambda_i )\) is the arrival waiting time

\(T_i = \text{min}(A_i , D_i) \) is the waiting time for an event

\(D_i \lt A_i \land X_t \gt 0 \implies X_{t+D_i} = i-1\)

\(A_i \leq D_i \implies X_{t+A_i} = i+1\)

Properties

\(T_i \sim\text{exp}(\nu_i), \nu_i =\begin{cases} \lambda_0 & i=0 \\ \lambda_i + \mu_i & i\neq 0 \end{cases}\)

\(p^{\text{jump}}_{i,i-1}= \frac{\mu_i}{\lambda_i + \mu_i}\)

\(p^{\text{jump}}_{i,i+1}= \frac{\lambda_i}{\lambda_i + \mu_i}\)

Kolmogorov equations (Jump processes)

PDE for transition densities for jump processes

Forward

\( \frac{d}{ds}\textbf{P}(s) = \textbf{A}\textbf{P}(s)\)

Backward

\( \frac{d}{ds}\textbf{P}(s) = \textbf{P}(s) \textbf{A} \)

\( \textbf{P}(s) = \textbf{I} +\sum^{\infty}_{n=1}\frac{s^n \textbf{A}^n}{n!} \)

\( \textbf{P}(s) = e^{s\mathbf{A}} \)

Independent increment

Processes such that \(X_{u} -X_0 , X_{t}-X_{s}\) are independent for any \(u \leq s \leq t\)

Processes with independent increments are Markov processes

Stationary independent increment

Processes such that \(X_{t} -X_s\) are independent when \( (t,s)\) is disjoint and \(X_t - X_s\) is dependent only on \(t-s\)

Counting process

Stochastic process \( (N_t) \) that count 'events' that have occured up to time \(t\)

Poisson process

Counting process with independent increments modelled by a Poisson distribution

\( (N_t) \text{ is a Poisson process with intensity } \lambda \iff \)

\( (N_t) \text{ is a Poisson process with intensity } \lambda \iff \)

\( (N_t) \text{ is a Poisson process with intensity } \lambda \iff \)

\( (N_t) \text{ is a Poisson process with intensity } \lambda_N \land (M_t) \text{ is a Poisson process with intensity } \lambda_M \iff \)

Compound Poisson process

Stochastic process

\(X_t = \sum^{N_t}_{k=1}Y_k\)

Cadlag

Right-continuous, left-limit function

Diffusion process

Continuous time Markov process with continuous trajectories such that there exists functions \(a,b\) such that

\(\text{E} (|X_{t}|^{2+\delta}) \lt \infty\)

  • \(a\) is the drift coefficient
  • \(b\) is the diffusion coefficient
  • \(X_{s+h} -X_{s} = a(s,X_s)h + b(s,X_s)(W_{s+h}-W_{s}) + \text{o}(h)\)

    Euler-Maruyama method

    Numerically approximating an SDE by a Markov chain

    \(dX_t = a(X_t , t)dt +b(X_t,t)dW_t\)

    Kolmogorov equation (diffusion processes)

    PDE for transition densities for diffusion processes

    Backward

    \( \frac{\partial f(y,t|x,s)}{\partial s} +a(x,s) \frac{\partial f(y,t|x,s)}{\partial x} +\frac{1}{2}b^2 (x,s) \frac{\partial^2 f(y,t|x,s)}{\partial x^2} =0\)

    Forward

    \( \frac{\partial f(y,t|x,s)}{\partial s} + \frac{\partial a(y,t)f(y,t|x,s)}{\partial x} +\frac{1}{2} \frac{\partial^2 b^2 (y,t)f(y,t|x,s)}{\partial x^2} =0\)

    \(f_{Y|X}(y,s|x,s) =\delta(y-x)\)

    Itō integration

    Itō integral 伊藤積分

    Integral defined for functions adapted to a filtered probability space with respect to a standard Wiener process

    \( \mathcal{P} = \{s_0 , s_1 , \ldots , s_n \} \)

    \[ \int^{t}_{0} f_s dB_s = \lim_{n\to \infty} \sum^{n}_{i=1}f_{s_i} (B_{s_i} -B_{s_{i-1}}) \]

    Properties

    Itō process

    Adapted process

    \( (X_t) \text{ is an Itō process} \iff X_t = X_0 +\int^{t}_{0} \mu_s ds + \int^{t}_{0} \sigma_s dB_s + \)

    Itō's lemma

    \( dX_t = \mu_t dt + \sigma_t dB_t \land f \implies df(t,X_t) = (f_t + \mu_t f_x + \frac{\sigma^{2}_{t}}{2}f_{xx})dt + \sigma_t f_x dB_t \)

    ARMA processes

    \(\mathrm{AR}(p)\) process

    Weakly stationary SP that that obey the 'AR formula'

    \( (X_t)_{t \in \mathbb{Z}} \text{ is an } \mathrm{AR}(p) \text{ process } \iff \)

    Properties

    \( (X_{t}) \text{is an } \mathrm{AR}(1) \text{ process } \)

    \(\mathrm{MA}(p)\) process

    SP that that obey the 'MA formula'; any SP drawn from this formula will be weakly stationary

    \( (X_t)_{t \in \mathbb{Z}} \text{ is an } \mathrm{MA}(p) \text{ process } \iff \)

    Properties

    \( (X_{t}) \text{ is weakly stationary }\)

    \(\mathrm{ARMA}(p,q)\) process

    Weakly stationary SP that that obey the 'ARMA formula'

    \( (X_t)_{t \in \mathbb{Z}} \text{ is an } \mathrm{ARMA}(p,q) \text{ process } \iff \)

    Properties

    \(c=0 \implies\)

    if \(\phi(z)\) has no roots on the complex unit circle, \(\mathrm{ARMA}(p,q)\) has unique stationary solution

    Backshift operator

    RV operator that takes the previous timestamp of that RV in the SP

    \(B\)

    Filtered coefficients

    \(\phi(B)X = \theta(B)Z\)

    \(X=\psi(B)Z \)

    Filtered coefficients

    Coefficients of \( \psi \), which are calculated by the following recurisive formula

    \( \psi_0 = 1 \)

    \( \psi_j = \sum^{j}_{k=1} \phi_k \psi_{j-k} + \theta_j\)

    Covariance formula for ARMA solution

    \( \gamma_{X}(h) - \sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} \psi_j \psi_k \gamma_Z (h+j-k)\)

    Causality

    ARMA process with solution \(X_t = \sum^{\infty}_{j=0} \psi_j Z_{t-j}\)

    \(X_{t} \text{ is an ARMA process } \implies X_{t} \text{ is causal } \iff \forall z [ |z| \leq 1 \implies \phi(z) \neq 0 ]\)

    \(\psi(z) = \frac{\theta (z)}{\phi(z)}\)

    Invertibility

    ARMA process such that \(Z_t = \sum^{\infty}_{j=0} \pi_j X_{t-j}\)

    \(X_{t} \text{ is an ARMA process } \implies X_{t} \text{ is invertible } \iff \forall z [ |z| \leq 1 \implies \theta(z) \neq 0 ]\)