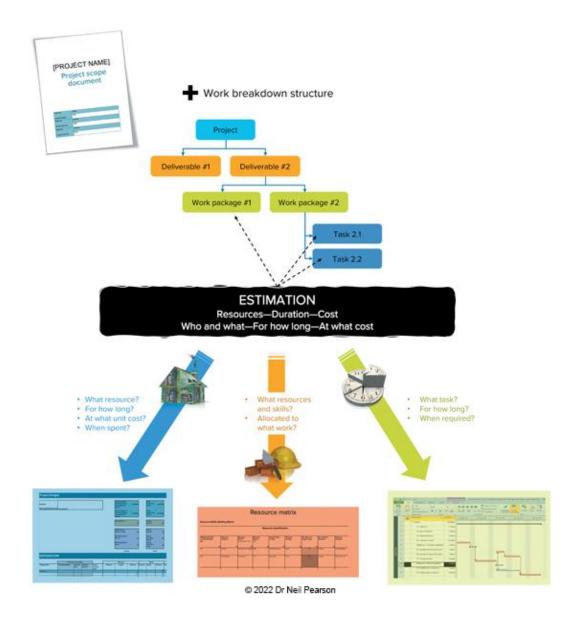
31272 Project Management and the Professional

Lecture 8: : Schedule Management

Subject Coordinator | Lecturer: Dr Safa Ghannam


31272@uts.edu.au

Objectives and Topics

- Use of Network Diagrams vs Gantt
- Milestones
- Critical Path
- Some sources of project delay

Project schedule

Scheduling workflow

Traditional planning

WBS

Develop AON

Schedule

Contemporary planning

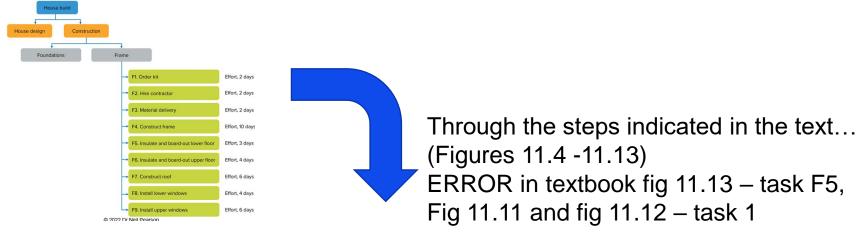
WBS

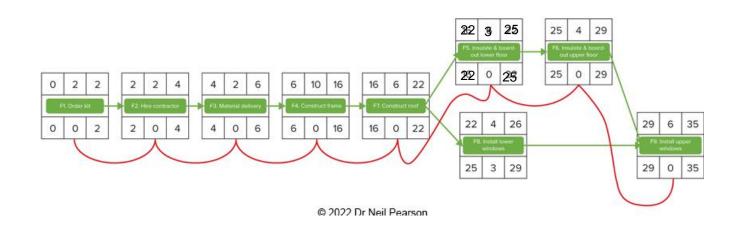
Schedule

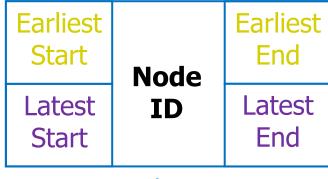
Review-generated AON

Work breakdown structure (WBS) plus estimating information

Activity on node (AON) network diagram



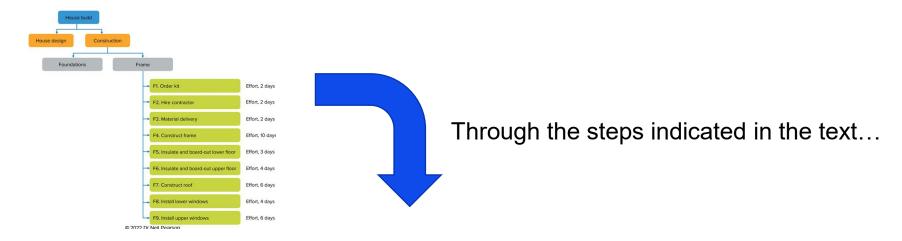

Project schedule, Gantt chart

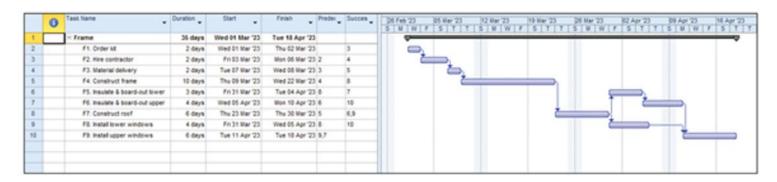

© 2022 Dr Neil Pearson

WBS to activity on node (AON)

Duration

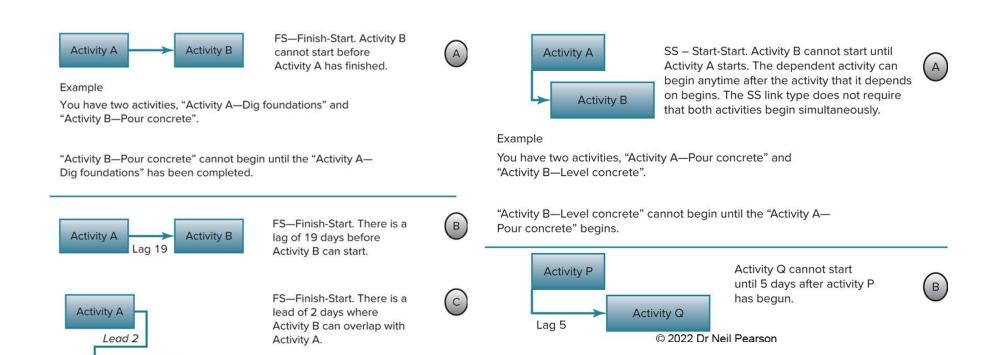
Float

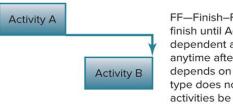

Terminology—critical path


The critical path is the longest path through the project network, but the shortest time in which the project can be completed.

From WBS to schedule

From WBS to schedule (cont'd)

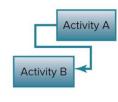



Terminology—relationship types

Activity B

© 2022 Dr Neil Pearson

Terminology—relationship types (cont'd)

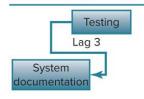

FF—Finish—Finish. Activity B cannot finish until Activity A finishes. The dependent activity can be completed anytime after the activity that it depends on is completed. The FF link type does not require that both activities be completed simultaneously.

Example

You have two activities, "Activity A—Add wiring" and "Activity B—Inspect electrical".

"Activity B—Inspect electrical" cannot be completed until the "Activity A—Add wiring" has been completed.

The dependent activity (B) cannot be completed until the activity that it depends on (A) begins.


The dependent activity can be completed any time after the activity that it depends on begins. The SF link type does not require that the dependent activity be completed concurrent with the beginning of the activity on which it depends.

Example:

(A

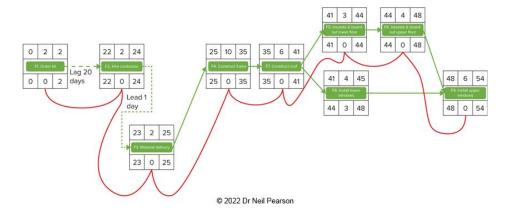
The roof trusses for your construction project are built offsite. Two of the activities in your project are "Activity A—Assemble roof" and "Activity B—Truss delivery".

"Activity A—Assemble roof" cannot be completed until "Activity B—Truss delivery" activity begins.

System documentation cannot end until 3 days after testing has started.

© 2022 Dr Neil Pearson

Advanced scheduling techniques


- **Total slack** tells us the amount of time a task can be delayed without delaying the project. Stated differently, total slack is the amount of time a task can exceed its early finish date without affecting the project end date or an imposed completion date.
- Free float (or free slack) is how long a task can be delayed without delaying the ES of the successor task.
- Uncertainty and the project schedule: A more advanced technique known as the *Monte Carlo* technique can assist if there is uncertainty (or risk) in relation to tasks on the schedule, in particular those on the critical path.
- Risk: Once a project schedule has been optimised after resource allocation, the residual (or baseline) schedule should have a risk assessment carried out.

Advanced scheduling techniques (cont'd)

- **Sensitivity**: Sensitivity is used against a number of different techniques in advanced scheduling. However, some project leaders apply the word sensitivity to the critical path. For example, for a network with only one critical path with non-critical tasks, having significant total float would be described as *insensitive*. A network which has perhaps multiple critical paths, which are similar in criticality, and any non-critical tasks have limited total float, would be described as *sensitive*.
- Dangler paths: When developing a project schedule as a project leader (or scheduler), we need to be mindful of not having what we refer to as dangler paths, paths that go nowhere (i.e. a path that comes to a dead end and has not been linked to a succeeding task). Dangler paths should be picked up and a relationship with a succeeding task in the network should be established.

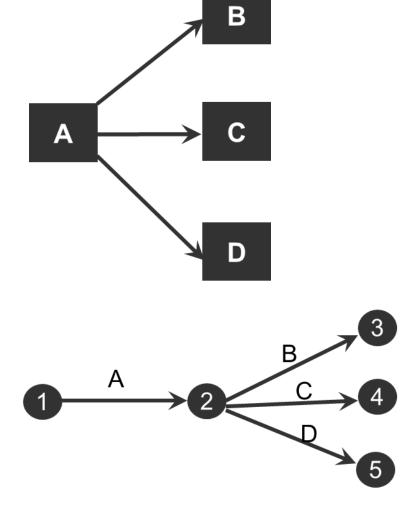
Advanced scheduling techniques (cont'd)

- Laddering: Laddering is where a long task may have other associated tasks that can take place before the long task completes 100 per cent. In such cases we need to take the long task and break it into smaller repetitive tasks, each with its associated sub-tasks.
- Leads and lags: The use of leads and lags has been developed to offer greater flexibility in schedule (and network) development. There are two types: delay (lag) and overlap (lead).

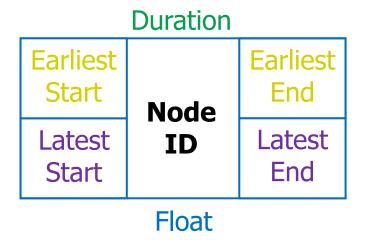
Advanced schedule efficiency techniques

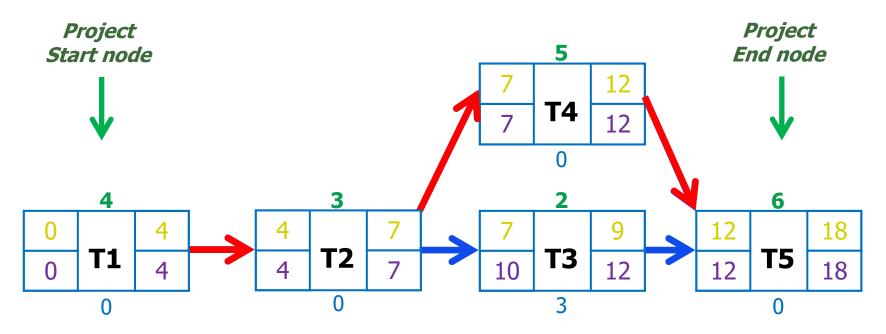
Copyright © 2023 McGraw-Hill Education (Australia) Pty Ltd

Technique	Primarily applied to	Comments	Typically impacts
Crashing	Time	Adding resources to a work package and/or task to reduce the duration (not effort).	Cost
Fast-tracking	Time	Seeking schedule efficiencies by resequencing activities from sequential to parallel; thus, saving time.	Risk
Outsourcing project work	Time	Engaging an outsourced provider because they have a large quantity of a resource to throw at the problem being solved; therefore, can complete in a swifter manner.	Cost, Risk
Scheduling overtime	Time	Using the existing workforce, extending their hours to get over a short-term hurdle.	Cost, Risk
Doing it twice—fast, and then correctly	Cost	Put in place a temporary cheaper solution until the more permanent solution can be deployed.	Cost, Risk, Time
Reducing project scope	Scope	Reducing the scope of the baselined project, removing the least-priority items.	Risk, Cost, Time, potentially Quality
Compromising quality	Quality	Reducing the quality of the end product, service or result. Must be customer led as they will be signing off deliverables against the revised quality criteria.	Risk, Quality


Network types

Activity-on-Node (AON)


Precedence diagrams
Uses a node to depict an activity


Activity-on-Arrow (AOA)

Uses an arrow to depict an activity

AON

Critical Path Method (CPM)

- Calculating the Critical Path
 - Forward Pass = The Earliest Start
 - Backward Pass = The Latest Start
 - Float (slack) = Latest Start Earliest Start


Float = 0 -> task is probably on Critical Path!

Rules of AON Network Display Diagrams

- There is only ONE start node and ONE end node
- Time moves from left to right
- Nodes are labelled sequentially (if possible)
- On forward pass take the bigger number
- On backward pass take the smaller number
- Network may NOT contain loops (node can't lead back to itself)
- Network may NOT contain dangles (except start/end, each node must have >= one activity preceding and >= one following it)

Network Information

Activity	Description	Preceding Activity	Activity Duration (Days)
А	Application approval	None	5
В	Construction plans	Α	15
С	Traffic study	А	10
D	Service availability check	А	5
Е	Staff Report	B,C	15
F	Commission approval	B,C,D	10
G	Construction Period	F	170
Н	Occupancy	E,G	35

Forward Pass Computation

- Add activity times along each path in the network (EF = ES + Duration).
- Carry the early finish (EF) to the next activity where it becomes its early start (ES)
- unless...

The next succeeding activity is also succeeding another activity with a larger EF, in which case the largest EF of all preceding activities is selected.

Backward Pass Computation

Subtract activity times along each path in the network

```
(LS = LF - Duration).
```

Carry the late start (LS) to the next activity where it becomes its late finish (LF)

unless...

There is a succeeding activity that has a smaller LS, in which case the smallest LS of all succeeding activities is selected.

Determining Float (or Slack)

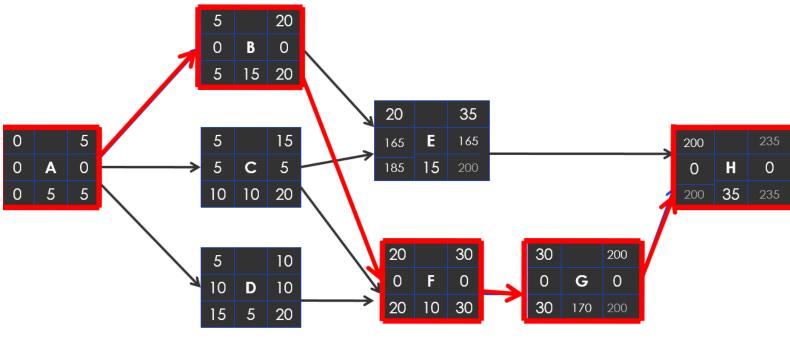
Total Float (or Total Slack)

The time available to delay completion of an activity without affecting project duration

$$TF = LST - EST$$
 or $LFT - EFT$

The critical path is the network path(s) that has (have) the least float (usually zero).

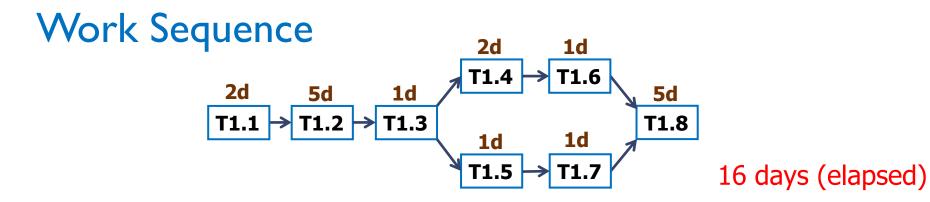
Free Float (or Free Slack)

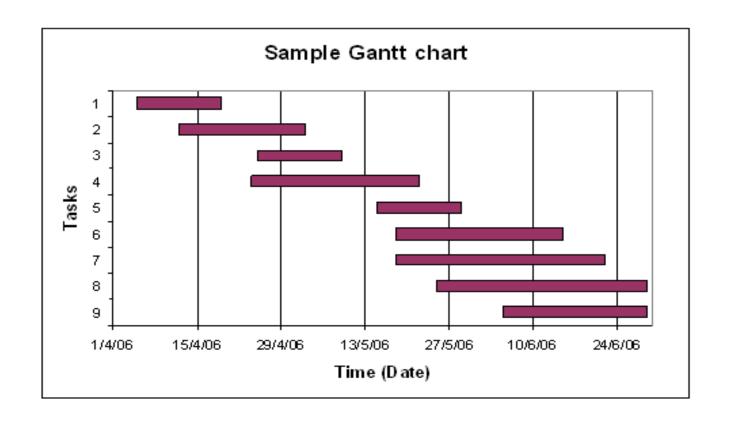

The time available to delay the start of an activity without delaying the Earliest Start of connected successor activities

FF cannot be > than TF

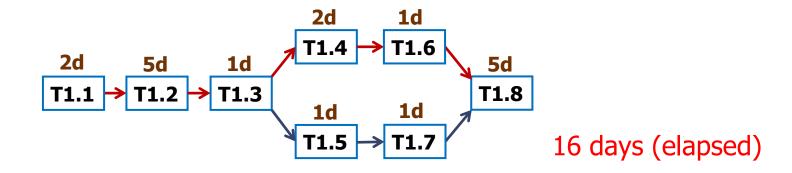
Critical path

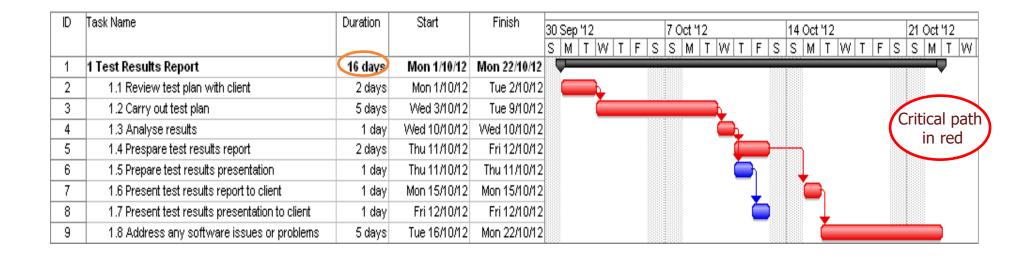
Activi ty	Description	Precedi ng Activity	Activ ity Dura tion (Day s)
А	Application approval	None	5
В	Construction plans	Α	15
С	Traffic study	А	10
D	Service availability check	А	5
Е	Staff Report	B,C	15
F	Commission approval	B,C,D	10
G	Construction Period	F	170
Н	Occupancy	E,G	35



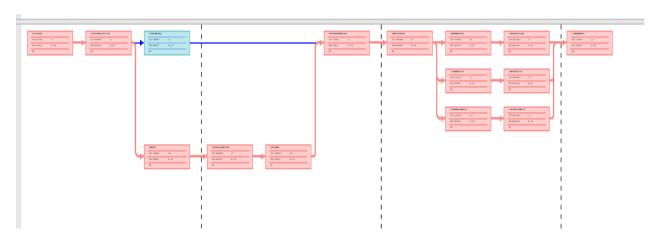

Bottom-Up Estimate Constructed from WBS

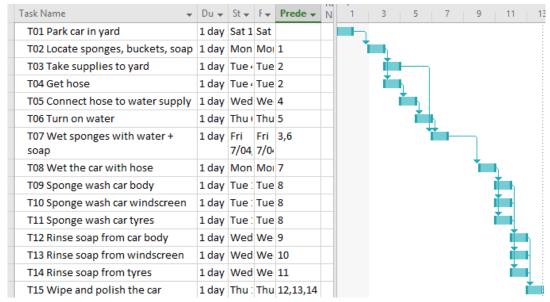
1 Test Results Report	18 days (accumulated)
1.1 Review test plan with client	2 day
1.2 Carry out test plan	5 days
1.3 Analyze results	1 days
1.4 Prepare test results report	2 days
1.5 Prepare test results presentation	1 day
1.6 Present test results report to client	1 day
1.7 Present test results presentation to client	1 day
1.8 Address any software issues or problems	5 days




Activity Schedule as Gantt Chart

- Gantt is standard for displaying project schedule information
- Task list with start and finish dates in calendar format


Network Diagram vs. Gantt Chart



Network Diagram: Car Wash Project

T01	Park car in yard
T02	Locate sponges, buckets, soap
T03	Take supplies to yard
T04	Get hose
T05	Connect hose to water supply
T06	Turn on water
T07	Wet sponges with water + soap
T08	Wet the car with hose
T09	Sponge wash car body
T10	Sponge wash car windscreen
T11	Sponge wash car tyres
T12	Rinse soap from car body
T13	Rinse soap from windscreen
T14	Rinse soap from tyres
T15	Wipe and polish the car

Network Diagram vs. Gantt Chart

Advantages of Network Display Diagrams

- Focus on activity sequence and precedence over schedule
- Easy visual of activities, durations, slack and critical path
- Useful on complex projects and with inexperienced PM / team
- Excellent for activity parallelism and as communication tool

Advantages of Gantt Charts

- Maps activities to a real-time calendar schedule
- Easy to compare back to a project baseline
- Provides a common reference mode used in <u>all</u> projects
- Primary tool of a project manager so most will understand it

Best to use both (but NDD too often put aside)

Estimation and Causes of Project Delay

- Deliberately overestimating activity durations (padding)
- Project manager safety margins (padding the padding)
- Anticipating cuts from management (add padding to offset potential cuts to padding)

Plus

- Failure to pass along positive early finish on activities
- Negative consequences of multitasking (switch time overlooked)
- Delays passed along from activity path merging
- 'Student syndrome'