
Numerical Methods 35006
Computer Lab 4: multi-dimensional minimisation

The aim of this lab is to guide you through the steps of creating a Powell Direction-Set multi-
dimensional search procedure. It relies on successful implementation of the bracketing and golden
searched from last week.

1. Surfaces in 2D can be imaged using both color
and contour plots. To enable this it is helpful
to use np.meshgrid. This takes two arrays gen-
erated by linspace and creates an array of 2D
coordinates.

a) Use linspace to generate an array of 5 x

values and an array of 10 y values in the ranges
x ∈ [0, 2] and y ∈ [0, 5]. Generate a grid by
typing

X,Y = np.meshgrid(x,y)

b) Now generate a 100×100 grid of points (X,Y)
in the range x ∈ [−2, 2] and y ∈ [−2, 2].

c) Use the pyplot plotting command pcolor

plt.pcolor(X,Y,np.exp(-X**2 - Y**2))

to make sure your plotting is working properly.

2. Use the pyplot command plt.contour to plot
a contour map of the function

f(x, y) = (x− 1)2 + y2 (1)

in the range x ∈ [−2, 2], y ∈ [−1, 1].

3. Define the function f(x,y) as in Q2 above. Im-
port the 3D Axes module Axes3D to plot this
function as a surface plot:

from mpl toolkits.mplot3d import Axes3D

fig = plt.figure()

ax = fig.add subplot(111, projection=’3d’)

surf = ax.plot surface(X, Y, f(X,Y))

4. Building on your code in Q3, create code that,
given a vector starting point xn = [−2,−1] and
a direction pn = [1, 0], plots 20 points along a
line starting at xn and going in the direction
pn, with a stepsize of h = 0.2 between each
point, according to

x = xn + tpn (2)

5. Building on your code in Q4, create a function
fline(t), that returns the value of f for a par-
ticular value of t, according to Eq. (2). Bracket
the minima along this curve using your search
routine from last week, then find the minimum
to within a tolerance of 10−5 using a golden
section search.

6. Add two loops to your code: one to search over
a set of orthogonal directions, which are stored
in a matrix pset. The other loop should iterate
these two searches until a minimum is found (or
the minimum is lost).

7. Finally, update the set of coordinate directions
at the end of each iteration to create a powell
search algorithm, as given in the lecture slides.
Test this with a few different starting points on
the function given in Eq. (1).

8. Create a function called powellsearch(f,x0),
which finds the minimum of a 2D function f

from a starting point x0. Incorporate this rou-
tine into your mysearch.py module.

