Numerical Methods 35006
Computer Lab 4: multi-dimensional minimisation

The aim of this lab is to guide you through the steps of creating a Powell Direction-Set multi-
dimensional search procedure. It relies on successful implementation of the bracketing and golden

searched from last week.

. Surfaces in 2D can be imaged using both color
and contour plots. To enable this it is helpful
to use np.meshgrid. This takes two arrays gen-
erated by linspace and creates an array of 2D
coordinates.

a) Use linspace to generate an array of 5 x
values and an array of 10 y values in the ranges
x € [0,2] and y € [0,5]. Generate a grid by
typing

X,Y = np.meshgrid(x,y)

b) Now generate a 100 x 100 grid of points (X, Y)
in the range z € [—2,2] and y € [-2,2].

¢) Use the pyplot plotting command pcolor
plt.pcolor(X,Y,np.exp(-X**2 - Yx%x2))

to make sure your plotting is working properly.

. Use the pyplot command plt.contour to plot
a contour map of the function

fy)=(z-1)"+y 1
in the range z € [-2,2], y€[-1,1].

. Define the function f (x,y) as in Q2 above. Im-
port the 3D Axes module Axes3D to plot this
function as a surface plot:

from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()

ax = fig.add_subplot(111l, projection=’3d’)

surf = ax.plot_surface(X, Y, £(X,Y))

. Building on your code in Q3, create code that,

given a vector starting point xn = [—2, —1] and
a direction pn = [1, 0], plots 20 points along a
line starting at xn and going in the direction
pn, with a stepsize of h = 0.2 between each
point, according to

X =X, + tpn (2)

. Building on your code in Q4, create a function

fline(t), that returns the value of f for a par-
ticular value of ¢, according to Eq. (2). Bracket
the minima along this curve using your search
routine from last week, then find the minimum
to within a tolerance of 10~° using a golden
section search.

. Add two loops to your code: one to search over

a set of orthogonal directions, which are stored
in a matrix pset. The other loop should iterate
these two searches until a minimum is found (or
the minimum is lost).

. Finally, update the set of coordinate directions

at the end of each iteration to create a powell
search algorithm, as given in the lecture slides.
Test this with a few different starting points on
the function given in Eq. (1).

. Create a function called powellsearch(f,x0),

which finds the minimum of a 2D function f
from a starting point x0. Incorporate this rou-
tine into your mysearch.py module.

