
Multi-dimensional integration and Monte-Carlo integration

Why multi-dimensional integration is hard

Direct integration

Monte-Carlo integration

Sampling: the big problem with Monte-Carlo integration

Solutions to this problem
 - quasi-random numbers
 - stratified sampling
 - importance sampling



Why multi-dimensional integration is hard:

1. It can scale really badly:

If for a 1D integral you need 100 points in a quadrature evaluation,
For a 2D integral you need 1002 points, for a 3D integral you need 1003 points, and so on

2. Boundaries become really complicated.

2. It is (often) difficult to know, in ND space, where the maximum contributions to the integral come from



Nested Integration
This is the only reliable option if you need to evaluate an N-D
integral to numerical precision.

The idea is that you integrate over one dimension at a time,
Using your 1D quadrature.

A simple domain in (say) 3D can be written

The integral in 3D over this domain is then



Code structure for nested integration can be a bit subtle, 
because you need to return a function as the answer to the 
inner integrals. 

Nested integration over x,y

Function yint(f,x,c,d)
 
 For the given value of x, integrate f(x,y) over y between c and d
 using 1D quadrature, call this yint

 return yint

Define limits for x as [a,b]
Define limits for y as [c,d]

Result = integration of yint(f,x,c,d) over x between a and b using 1D 
quadrature

Note:

For most programming languages,
You’ll have to define “dummy” functions

f1(y) = f(x,y) with a fixed x

to do this step, and another 
“dummy function”

f2(x) = yint(f,x,c,d) with a fixed f, c and d

To do this step.



Nested quadrature is: 

• Reliable

• Accurate

• Complicated

• Slow

Is there a method that scales better for higher dimensions, 
even if it means sacrificing some accuracy?



a b

Monte Carlo Integration
To find the integral 

We previously approximated the function with something
that is easier to integrate.

However we could also view the integral as the expected value
of f if we sampled it over a large number of points.

For large N we can approximate

As the number of sampling points increases, 

In accordance with the Law of Large numbers.



This also works in two dimensions:

Where 𝑉𝑉 is the size of the region being sampled.



This also works in two dimensions:

Where 𝑉𝑉 is the size of the region being sampled.

This also works for complicated regions:
Just define the function to be zero outside the region
that you’re interested in.



Monte Carlo integration

1. Pick a random sample of points for each of your dimensions
p = (xp,yp,zp, …), which covers your region of integration.

2. The integral is then the sum

Where you only include the points lying in the integration region.
Here V is the volume of the sampling domain.



Advantages:

1. Scales with the number of points rather than as the power of the number of dimensions

2. Simple to implement

Disadvantages:

Sample variance!



Variance of Monte Carlo:

The error in the estimate of the integral 
decreases as ∼ 1/√𝑁𝑁

Recall:

So that:



Strategies for reducing the variance (and hence the error)
revolve around reducing the “clumping” of the random points.

Random numbers clump together in a way not ideally suited
For Monte-Carlo integration.

Is there a type of random number that is
Random, but not too random?

The answer is “yes”: these are known as quasi-random numbers.



Quasi-random numbers vs Pseudo-random numbers
Quasi-random numbers, which aim at a certain level of randomness, should
Not be confused with Pseudo-random numbers, which try to be as random as possible.

Sequences of genuine random numbers are (surprisingly!) difficult
to simulate using computers. Often a sequence that seems random 
Ends up having hidden order in it.

The attempt to generate pseudo-
randomness is a whole subject in 
itself! See Chapter 7 of Numerical 
Recipes for more info.



Quasi-random number sequences
These sequences are also known as “sub-random sequences”; they
Are random numbers that “avoid each other” to a defined extent.

Important types:

Halton sequences:
(easy to code)

Sobol sequences:
(harder to code, but generally better)

To get the jth number in a Halton sequence:

1. Write 𝑗𝑗 as a number in base 𝑏𝑏, where 𝑏𝑏 is prime

2. Reverse the digits, and put a decimal point
in front of the sequence. This is the jth number 𝐻𝐻𝑗𝑗

To get the jth number of the Sobol sequence,
We need to compute the Gray Code of j G(j), then write it as a 
binary fraction. It then gets pretty complicated, but let me know
If you’re interested!

https://en.wikipedia.org/wiki/Sobol_sequence
https://en.wikipedia.org/wiki/Gray_code

https://en.wikipedia.org/wiki/Gray_code
https://en.wikipedia.org/wiki/Gray_code




Stratification sampling:
This strategy reduces the sampling variance by (recursively)
Dividing the volume into sub-domains, and sampling only on those domains.



Importance sampling
Put more samples where the function f is bigger:

Choose a sampling density 𝑝𝑝 such that



Other strategies:

• Recursive stratified sampling

• Mixed methods (using both stratified sampling and importance sampling)


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18

