
Sparse linear systems

Sparse matrices

Techniques of storage

Creating sparse matrices in python

Algorithms for sparse matrices in python

 - elementary matrix operations

 - decomposition and other methods

Arnoldi iteration

 



From https://cmdlinetips.com/2018/03/sparse-matrices-in-python-with-scipy/

If most of the elements in a matrix are zero, then it makes no sense to store them.
In addition, a lot of the matrix operations will be elementary.

Instead of storing the full matrix, we store only the non-zero elements. 





Sparse matrices can be stored using different protocols: 

coo_matrix: COOrdinate format matrix

csc_matrix: Compressed Sparse Column matrix

csr_matrix: Compressed Sparse Row matrix

bsr_matrix: Block Sparse Row matrix

dia_matrix: Sparse matrix with DIAgonal storage

dok_matrix: Dictionary Of Keys based sparse matrix.

lil_matrix: Row-based linked list sparse matrix

Different protocols are more efficient for different algorithms.
We will discuss two of these: the COO format and the CSC format



The Coordinate format matrix format (COO)
In this storage protocol, the indices are stored as a double-entry list,
And the elements are stored as a list of the same length. E.g. 

(0,0) 1
(0,2) 3
(0,4) 9
…

How this is storedMatrix

The COO is a natural way to think about sparse matrices, but is not efficient for matrix operations.



https://matteding.github.io/2019/04/25/sparse-matrices/



Compressed Sparse Column matrix (CSC) format
In this protocol the non-zero entries are stored in the following way:

Store the Data in an array going down the columns and removing the zeros
Store the Row index of each element in the Data array
Create an array where adjacent pairs give slices into the Data array.

Matrix How this is stored

1 0 2

0 0 3

4 5 6

Index pointers:      [ 0 , 2 , 3 , 6 ]

Data:                      [ 1 , 4 , 5 , 2 , 3 , 6  ]

Row indices:          [ 0 , 2 , 2 , 0 , 1 , 2 ]



https://matteding.github.io/2019/04/25/sparse-matrices/



Which format to use? Two things to keep in mind:

1. Some formats are more efficient than others for certain operations. 

We recommend sticking to CSC or CSR formats for linear algebra

2. It really doesn’t matter – python will let you know if you start using an inefficient
matrix format.

You can convert between formats using 

A.tocsc()

A.tocoo()

.etc.



The Sparse Matrix modules in python

We will be relying on the sparse module from scipy, 
which itself contains a sparse linear algebra module

Note: the sparse “linalg” module is different from the 
regular scipy linalg module.

Sparse matrices in python are stored in their own data 
type, according to the compression protocol (COO, CSC, 
etc)



Building basic sparse matrices in python
Sparse matrices can be constructed directly using

• the type of sparse matrix you want

• a list of row indices
• a list of column indices

• a list of the data entries

A = sp.csc_matrix((entries,(row,col)))



Larger sparse matrices can be defined using the “shape”
option

Matrices of different data types can be defined using the “dtype” option

A = sp.csc_matrix((entries,(row,col)),shape= (M,N))



Sparse matrices can be converted to dense matrices
in two ways:

1. Using the .todense() or .A methods

2.    Automatically as the result of a matrix operation 
that produces a dense matrix

NB: when this happens be careful! Some of your
Sparse routines will not work on regular matrices.



You can convert a dense matrix to a sparse matrix using
The sp.[…]_matrix() function



Sparse matrices can be visualised using 
the “spy()” function in conjunction with 
matplotlib.



Sparsify-ing matrices
Often in a real situation a matrix will have elements 
which are close to zero without being sparse. A useful
Technique is to “sparsify” the matrix by setting all
the small elements to exactly zero.

Python offers a simple way to do this:



Building more complicated sparse matrices in python – the diags function
When building a sparse matrix yourself you usually have to specify the
elements either along the main diagonal, or along the upper or lower diagonals.

This can be done using the diags function. There are two approaches:

1. Direct definition:

A = sp.diags([[elements on 1st diagonal],[elements on 2nd diagonal]],…],[index of first diagonal, index of 2nd diagonal,…]) 



2.     Broadcasting (assign all elements to a single number)

A = sp.diags([element 1,element 2, ...],[0,1,2,...],shape=(N,N))



Operations with sparse matrices
All the “usual” matrix operations work with sparse matrices.

E.g. Matrix multiplication:

Note that multiplication will convert a sparse matrix to a normal one if it becomes non-sparse. 

Also Note: The norm function in scipy only computes the 𝐿𝐿1 and 𝐿𝐿∞ norm!



Decomposition of Sparse matrices
The LU decomposition can be done using the sparse.splu() function
In the scipy.sparse.linalg module, and returns an L and U packaged together:

Note: There is currently no 
official sparse QR decomposition for python!



Arnoldi iteration
Arnoldi iteration is a powerful and stable method for computing the eigenvalues of large matrices.
It is especially suitable for sparse systems.

Recall in Power Iteration, successive applications of A bring any vector toward the eigenvector.

𝐛𝐛 𝐛𝐛 𝐀𝐀 𝐛𝐛
𝐀𝐀𝟐𝟐 𝐛𝐛

The idea of Arnoldi iteration is to keep the information from each iteration,
and use it to construct an orthogonal basis that can be used to compute the eigenvalues.



𝐛𝐛 𝐛𝐛 𝐀𝐀 𝐛𝐛
𝐀𝐀𝟐𝟐 𝐛𝐛

For each iteration we keep the resulting vector into a matrix, known as the Krylov matrix

𝐾𝐾𝑛𝑛 =
⋮ ⋮ ⋮
𝑏𝑏 𝐴𝐴𝑏𝑏 𝐴𝐴2𝑏𝑏
⋮ ⋮ ⋮

⋯
⋮

𝐴𝐴𝑛𝑛−1𝑏𝑏
⋮

From each column we construct an orthonormal set of vectors 𝐪𝐪𝑗𝑗
using Gramm-Schmidt orthogonalization. This is known as the Krylov subspace.

𝐯𝐯1

𝐯𝐯2



We then re-write the matrix A in terms of these new basis vectors 𝐪𝐪𝑗𝑗

𝐻𝐻 = 𝑄𝑄∗𝐴𝐴 𝑄𝑄

Because the 𝐪𝐪𝑗𝑗s are orthogonal, the matrix H is 
almost upper triangular, and will also have the same 
eigenvalues as A.

We can then use QR-decomposition to compute the 
eigenvalues extremely quickly and efficiently.

Arnoldi Iteration

1. Start with a vector q0 (preferably randomized)

2. Compute

                                    

3. Loop over j from 1 to k-1

 Compute

 Normalise 

4. Repeat from step 2 as many times as you like

5. Do QR decomposition on the matrix Q to find the 
eigenvalues



Other Important Sparse approaches for solving the eigenvalue problem:

• Lanczos algorithm:
This is the Arnoldi iteration applied to symmetric matrices

• Generalised minimal Residual method (GMRES)
Uses Arnoldi iteration to compute the eigenvalues of an arbitrary non-symmetric matrix

• Conjugate gradient squared algorithm
Applies conjugate gradients to solve linear systems
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