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Chris Poulton (“Dr Chris, Dr Poulton”, “Chris”, etc etc, just 
please not “Christopher”) 

Chris.Poulton@uts.edu.au

Emails answered by Monday, Wednesday mornings.

Your Subject Coordinator/Lecturer this semester: 

mailto:Chris.Poulton@uts.edu.au


Assessment

The assessment has the following components:

3

Labs:   Due each week  10%

Assignments:  Due weeks 3,6,9,12  50%

Final Project:  Due end of Week 12 40%
 
  

Classes and materials:

Workshop (Wrk1): Weekly workshop held online
  
  
   
Computer Labs (Cmp1): 3 hours per week



Each week:



Assumed Knowledge and skills:

1. Thorough algebra 

2. Calculus from Maths 2 / IMAM / MM2

3. Some previous coding experience 
(if not, then please let me know)



What do we mean by Numerical Methods?

Definition: A numerical method is a procedure run by a computer
to give an approximate answer to some mathematical problem. 

By mathematical we mean any problem that can be
stated mathematically, not limited to pure mathematics,
but often arising in (say) physics and engineering.

approximate: because while sometimes you can get 
an exact solution, almost always you can’t.

Procedure: what the computer does



Important applications:

Structural engineering Supply chain optimisation

Mathematical financePhysics engines



Is is sometimes useful to distinguish between Numerical Methods
and Numerical Analysis:

Numerical Methods: what works Numerical Analysis: why things work

The best route to understanding is

1) To use a mixture of what and why 
2) To “get your hands dirty” fiddling around with things

This subject will mix the what and the why, but will concentrate mostly
on practical implementation. 

algorithms theory



Why are numerical methods necessary?

Nowadays can’t we just “throw massive amounts of computational power” 
at any problem we want to solve?

1. It’s not that simple – someone has to programme the computers
anyway, using… numerical methods

2. …



Main aims of this subject:

1. Introduce the main numerical methods
currently in use in scientific and engineering computing

2. Get an appreciation for how these methods work,
and more importantly when they don’t

3. Give you practice in implementing each of these methods



Subject structure by week*:

1. Programming basics. Intro to Python: control structures, data types, style 
and technique. Numerical precision. Graphing functions. Numerical 
differentiation

2. Root finding and Numerical solution to nonlinear equations. Newton’s 
method. Bisection, the secant method, etc. 

3. Minimisation and maximisation in 1D
4. Numerical optimisation in higher dimensions – gradient descent, simplex 

methods
5. Interpolation and extrapolation – splines etc
6. Integration in 1D: quadrature etc.
7. Integration in multiple dimensions: Monte Carlo methods
8. Solution of linear systems
9. Methods for sparse linear systems
10. Solution to ODEs – Euler, Runge Kutta, Predictor-Corrector
11. Numerical solution of ODEs and PDEs by finite differences
12. The Fast Fourier Transform (time permitting)

*Note that this is the first time that this subject has been run, so
this is (I hope) only a good approximation of what will be covered.



Programming Basics

Why Python?

Overall structure of non-parallel code

The important control structures

Stopping conditions

Data types

Style and Technique



Why are we using Python?

Disadvantages:

 - it’s relatively slow

 - it is not very “elegant” as a language

 - the module libraries are a bit of a mess

 - not great for memory-intensive tasks

Advantages

 - it’s free

 - it’s easy to learn

 - it’s easy to read

 - it is now the Industry Standard in scientific computing



Overall structure (of non-parallel code):



A good “beginners cheat sheet” for python is given in canvas
(from https://nbisweden.github.io/workshop-python/img/cheat_sheet.pdf)





The important control structures

See: https://www.educative.io/answers/what-
are-control-flow-statements-in-python

1. Sequential statements
Tells computer to run commands in a
fixed order



2. Conditional statements
Creates two (or more) paths for the computer
to follow

Instructions: if, else, elif



3. Iteration (loops)
Performs a loop a number of times (for) or
while a specified condition is true (while)

FOR loop:



Aside: The range() instruction in python

The instruction range(N) returns a list of integers, starting at zero and ending at N-1.
It is good for creating lists of integers. 

You can change the starting value from zero to anything you like:



WHILE loop:

Dangers of a while loop:
The code can run forever!
e.g. what happens here?



Stopping conditions

It is very important to have a built-in “fail-safe” that 
tells your code where to stop (otherwise you have 
to stop it manually).

break: terminate the loop and go to the end

continue: jump over the remaining code inside the loop
and go to the next iteration

pass: do nothing



Data types in python

Mostly we will be using integers, floats, and Booleans.



Lists
It will become important to gather numbers together in Lists.
Think of a list as a set of boxes into which we put numbers of a 
given type.

0 1 2 3 4 5
or

-1

0 1 2 3 4

-1

It is sometimes useful to think of the index as labelling the boundary
between two boxes

Value (can be any data type)

Index (must be integer)

5
or



Lists can be created in the following ways

1. Manually:

2. Using range():

Or if you’re careful, in a contracted form using range:



3. Using np.linspace (very important for this subject)



Style

Developing good programming style is key to well-running code
(and getting good marks in this subject!) 

Three general rules:

1. Always comment your code!

2. Be clear, not clever

3. Divide work into bite-size chunks (functions) and 
only give each chunk what it needs to know (i.e. use information hiding)



1. Always comment your code!
(You will thanks yourself later)



2. Be clear, not clever



3. Divide work into bite-size chunks (functions) and 
only give each chunk what it needs to know (i.e. use information hiding)



The golden rule: never write the same 
code segment twice!



Precision and numerical differentiation

How computers store real numbers

Machine precision

Types of errors

Finding numerical derivatives



How python 3 stores real numbers
Python stores real numbers in double-precision, floating point format. Each number
is a string of ones and zeros in the following form: 

If we want to convert a number from this form to a real value 
then the formula is:

This is a bit hard to grasp in binary, so let’s imagine this would work in base 10
(the end result is the same):

1 0 9 9 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 02.5

1 0 9 8 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 02.5 x 10-1

2.5 x 10-2 1 0 9 7 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2.5 x 1030 1 1 2 9 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



If two numbers get closer together, then eventually
the computer cannot distinguish them.

e.g.

1 0 9 9 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 52.500000000000000052

1 0 9 9 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 52.500000000000000057

The threshold at which two numbers become indistinguishable
is known as the machine precision 𝜖𝜖𝑚𝑚

For double precision floats, the machine precision is 𝜖𝜖𝑚𝑚 = 2−52 ≈ 2𝑒𝑒 − 16 



1 0 0 0 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5

(Important: the machine precision is not the smallest number that can be stored on the machine.)

The prevision only depends on the length of the fraction, whereas the smallest
number depends on the number of bits in the exponent



An error due to machine precision is a fractional or relative error – it tells us how much a number can be “off”
as a fraction of the number itself. 

To see this, consider the example from earlier: The machine
cannot distinguish

But it has equal trouble distinguishing

1 0 9 9 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 52.500000000000000052

1 0 9 9 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 52.500000000000000057

1 1 2 9 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 52.500000000000000052 × 1030

1 1 2 9 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 52.500000000000000057 × 1030



Two types of errors:

Round-off error occurs when errors in the storing of numbers accumulate. 

This error depends on the machine, and on how the machine stores numbers.

*there are actually a few things that you can 
do to minimise round-off error but we’ll get 
to them later

Truncation error occurs when there is a difference between what you compute
and the true answer. It occurs even when the round-off error is zero.

This error depends on your algorithm.

Reducing truncation error is practically the entire goal of all 
numerical methods.

There is generally not much that can be done about this*.



Topic 1: Numerical Differentiation

Discussion question:
Imagine that we have a function 𝑓𝑓(𝑥𝑥) which we can evaluate only numerically.
How can we compute the derivative 𝑓𝑓𝑓(𝑥𝑥)?

f(x)
First rule of numerical differentiation: Avoid it if at all possible





The formula for computing the derivative

is known as a forward difference. 

There are other options: for example, we could also try the balanced difference 

It turns out that the balanced difference method performs far 
better than the forward difference method. 



The forward difference method has both round-off error 
and truncation error

Round-off error calculation:
Imagine we can compute the function f(x) to machine precision 𝜖𝜖𝑚𝑚

That is:



Truncation error calculation:
From Taylor series, we know that 





Forward difference

Balanced difference


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44

