35006 Numerical Methods

Your Subject Coordinator/Lecturer this semester:

Chris Poulton (“Dr Chris, Dr Poulton”, “Chris”, etc etc, just
please not “Christopher”)

Chris.Poulton@uts.edu.au

Emails answered by Monday, Wednesday mornings.

mailto:Chris.Poulton@uts.edu.au

Classes and materials:

Workshop (Wrkl1): Weekly workshop held online

Computer Labs (Cmp1l): 3 hours per week

Assessment

The assessment has the following components:
Labs: Due each week
Assignments: Due weeks 3,6,9,12

Final Project: Due end of Week 12

10%

50%

40%

Each week:

i » Week 1: Intro to Python; Error, precision and numerical differentiation

¥ Workshop Class

¢ Blank slides.pdf

¢ Annotated Slides

i Computer Lab this week

¢ Computer Lab 1.pdf

Lab 1 solutions and scripts

i Preparation for next week

Preparation Tasks

i Other Resources

Link to Numerical Recipes Textbook

Additional Reading

Assumed Knowledge and skills:

1. Thorough algebra

2. Calculus from Maths 2 / IMAM / MM2

3. Some previous coding experience
(if not, then please let me know)

What do we mean by Numerical Methods?

Procedure: what the computer does

Definition: A numerical method is a procedure run by a computer
to give an approximate answer to some mathematical problem.

approximate: because while sometimes you can get
an exact solution, almost always you can’t.

By mathematical we mean any problem that can be
stated mathematically, not limited to pure mathematics,
but often arising in (say) physics and engineering.

Important applications

2 94 ..
£ g8 tz o2t
1%y o o g] 25
? % ¥ &c-.G b m mmr mm. mmm.
M ﬂ Gl Mw c M
-3 : .2
g f i s = = g
E: z
| m m 20 | Mm,o o—_
R = m
| Bag © + m s
== S S S i
R o R R o - S
(@) g
E
%% "y c s !
s . e —
lilo, ¢ ’ i o m. 5
g a i
g : 3 3 3 £ & ¢
P o M m M O 2 =
$ £ <
o b - fa - " =
Y s g1 P> :
R 1% 1 I o E
m T~ # m ™ % o E
¥ @ 3 =
f - . = 3 £ >
) = ! T owv m <
% . 2 e O L < N
FTITACE ETRTETETE w W h
/ ,
] h
{ f
b) < o)
— — <

ineering

S
(KRS
Sttt
ff.f@?.vn%%

X

St
ol
285

Structural eng

Mathematical finance

ICS engines

Phys

Is is sometimes useful to distinguish between Numerical Methods
and Numerical Analysis:

Numerical Methods: what works Numerical Analysis: why things work

| =

algorithms

The best route to understanding is

1) To use a mixture of what and why
2) To “get your hands dirty” fiddling around with things

This subject will mix the what and the why, but will concentrate mostly
on practical implementation.

Why are numerical methods necessary?

Nowadays can’t we just “throw massive amounts of computational power”
at any problem we want to solve?

/1. It’s not that simple — someone has to programme the computers \
anyway, using... numerical methods

2. ...

Main aims of this subject:

1. Introduce the main numerical methods
currently in use in scientific and engineering computing

2. Get an appreciation for how these methods work,
and more importantly when they don’t

3. Give you practice in implementing each of these methods

Subject structure by week*:

1. Programming basics. Intro to Python: control structures, data types, style
and technique. Numerical precision. Graphing functions. Numerical
differentiation

2. Root finding and Numerical solution to nonlinear equations. Newton’s

method. Bisection, the secant method, etc.

Minimisation and maximisation in 1D

Numerical optimisation in higher dimensions — gradient descent, simplex

methods

Interpolation and extrapolation — splines etc

Integration in 1D: quadrature etc.

Integration in multiple dimensions: Monte Carlo methods

Solution of linear systems

Methods for sparse linear systems

10 Solution to ODEs — Euler, Runge Kutta, Predictor-Corrector

11. Numerical solution of ODEs and PDEs by finite differences

12. The Fast Fourier Transform (time permitting)

> W

© 0 N O U

*Note that this is the first time that this subject has been run, so
this is (I hope) only a good approximation of what will be covered.

Programming Basics

Why Python?

Overall structure of non-parallel code
The important control structures
Stopping conditions

Data types

Style and Technique

Why are we using Python?

Disadvantages:
- it’s relatively slow
- itis not very “elegant” as a language
- the module libraries are a bit of a mess
- not great for memory-intensive tasks
Advantages

- it’s free

- it’s easy to learn

- it’s easy to read

- it is now the Industry Standard in scientific computing

Overall structure (of non-parallel code):

W eooSNOVhAE WM R

P
2R e
N R e

A 13
A 14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

sum_integers.py

Created on Wed Jul 20 17:31:57 2022
@author: Chris Poulton

Script to add the first N integers together

import numpy as np
import matplotlib.pyplot as plt
import math as math

Function definitions

def foo(n):
foo = n*(n+l)/2
return foo

Main script starts

print("Please enter the maximum value:")
nmaxstr = input()
nmax = int(nmaxstr)

print("Summing all integers from 1 up to",nmax)

nsum = ©

for i in range(1,int(nmax)+1):
print(i,"+")
nsum = nsum + i

print("=",nsum)

print("Analytic formula: sum =",foo(nmax))

A good “beginners cheat sheet” for python is given in canvas
(from https://nbisweden.github.io/workshop-python/img/cheat_sheet.pdf)

[Python for Beginners - Cheat Sheet]

Data types and Collections Numerical Operators Comparison Operators List Methods

integer 10 + addition < less l.append(x) append x to end of list
float 3.14 = subtraction <= less or equal l.insert(l, x) insert x at position i
boolean True/False * multiplication > greater l.remove(x) remove first occurrence of x
string ‘abcde’ / division >= greater or equal l.reverse() reverse listin place
list [1, 2,3, 4, 5] ** exponent == equal
tuple (1,2,a".b") % modulus I= not equal Dictionary Methods
set {*a".'b’, 'c’} !/ floor division
Rlome a1, b2} Logical Operators d.keys() returns a list of keys
. d.values() returns a list of values
Operations and logical AND) .
. d.items() returns a list of (key, value)
. or logical OR
Strings:
. . . not logical NOT
s[i] i:thitem of s

String Methods

s[-1] last item of s AR
s.strip() remove trailing whitespace

in value in object H ; P
Lists: J s.split(x) return list, delimiter x

ti l ti bject ioi . S
L=1] define empty list notin value notinobjec s.join(l) return string, delimiter s

L . . s.startswith(x) return True if s starts with x
L[i:j] slice in range i to j

il 5 FeplaceliWithix Conditional Statements s.endswith(x) return True if s ends with x

[i:j:Kk] slice range i to j, step k if condition: s.upper() FEBUGD CEE WEPEIEEse mily
<code> s.lower() return copy, lowercase only
Dictionaries: elif condition:
d={} create empty dictionary <code> Import from Module
d[i] retrieve item with key i else:
i <code> from module import func import func
d[i] = x store x to key |

from module import funcasf import func as f
iind is key iin dictionary

[Python for Beginners - Cheat Sheet]

Built-in Functions

float(x) convert x to float
int(x) convert x to integer
str(x) convert x to string
set(x) convert x to set
type(x) returns type of x
len(x) returns length of x
max(x) returns maximum of x
min(x) returns minimum of x
sum(x) returns sum of values in x
sorted(x) returns sorted list
round(x,d) returns x rounded to d
print(x) print object x

while condition:
<code>

for var in list:
<code>

Control statements:
break terminate loop
continue jump to next iteration

pass does nothing

String Formatting Reading and Writing Files

“Put {}into a {}".format(“values”, “string”)
‘Put values into a string’

“Put whitespace after: {:<10}, or before:{:>10}".format(“a”,”b")
‘Put whitespace after: a '

,or before: b

“Put whitespace around:{:*10}.".format(“c")
‘Put whitespace around: o

fh = open(<path>,’'r’)
for line in fh:
<code>

fh.close()

out = open(<path>,'w’)

importre

p.search(text)

p.sub(sub, text)

Regular Expressions

p = re.compile(pattern) compile search query

search for all matches

any one character

repeat previous 0 or more times
repeat previous 1 or more times
repeat previous 0 or 1times

any digit

any whitespace

any character in this set {a. b, c}
any character *not* in this set
any letter between aand z

aorb

substitute match with sub

out.write(<str>)

out.close()

Functions

def Name(paraml, param2 = val):

<code>
#param?2 optional, default: val

return <data>

import sys

import module
sys.argv[0] name of script

sys.argv[1] first cmd line arg

The important control structures

1. Sequential statements
Tells computer to run commands in a
fixed order

10
11
12
13
14
15
16
17

10

import numpy as np
import matplotlib.pyplot as plt
import math as math

X
b

np.linspace(1,10,11)
2

c = X**¥b

plt.plot(x,c)

100 +

20 1

See: https://www.educative.io/answers/what-
are-control-flow-statements-in-python

2. Conditional statements

Creates two (or more) paths for the computer

to follow

Instructions: if, else, elif

16
11
12
13
14
15
16
17
18
19

a 5
b 10
C 15
if a » b:
if a > c:
print("a value is big")
else:
print("c value is big")
elif b > c:
print("b value is big")
else:
print("c is big")

In [1]: run selection.py
c is big

In [2]:

Test False
Expression
of if
1
True
‘ Test False
L Expression
Body of if of elif
True
Y L
Body of elif Body of else

.

Fig: Operation of if...elif...else statement

3. Iteration (loops)
Performs a loop a number of times (for) or
while a specified condition is true (while)

, S

FOR loop:

8 import numpy as np |
9 import matplotlib.pyplot as plt s
10 import math as math Conditional
11 Code
12

13 for j in range(o,10): foie coditian

14 print(j, end = " ") e

15

16 for Condition

is false

17 o

/4
N

—
\
Seg®

In [5]: run iterationl
91234567829

In [6]:

Aside: The range() instruction in python

The instruction range(N) returns a list of integers, starting at zero and ending at N-1.
It is good for creating lists of integers.

8 import numpy as np

9 import matplotlib.pyplot as plt
10 import math as math

11

12

13 for j in range(9,10):

14 print(j, end = " ")

15

16

17

You can change the starting value from zero to anything you like:

13 for j in range(4,10):
14 print(j, end = " ")
15

16
17

. WHILE loop:

8 m

9 i=20

10 while i < m:

11 print(i, end = " ") Start of the loop
12 i=1i+1

13 print("End")

14

15

condition

In [5]: run iterationi
©123456728°¢9

In [6]: run iteration2 A

91234 End statements or body Exit the loop
of while

In [7]:

Dangers of a while loop:
The code can run forever!
e.g. what happens here?

8 m

= -1
9 i=20

10 while i > m:

11 print(i, end = " ")
12 i=1i+1

13 print("End")
14

Stopping conditions while condition:

<code>

for var in list:

It is very important to have a built-in “fail-safe” that <code>
tells your code where to stop (otherwise you have Controletatements:
to stop it manually). break terminate loop
continue jump to next iteration
break: terminate the loop and go to the end pass does nothing

continue: jump over the remaining code inside the loop
and go to the next iteration

pass: do nothing

? ¢

Start of the loop

|
c::nﬁbonal condition
Code
i A
e for condition
is true
for_Condition statements or body Exit the loop
is false

of while

®

Data types in python

Data types and Collections

integer 10

float 3.14
boolean True/False
string ‘abcde’

list [1, 2,3, 4, 5]
tuple (1,2, a’, 'b)
set {*fa’.’'b’, "¢’}
dictionary {*a’:1, 'b":2}

Mostly we will be using integers, floats, and Booleans.

Lists
It will become important to gather numbers together in Lists.
Think of a list as a set of boxes into which we put numbers of a

given type.

In [9]: mylist = [1.0, 1.2, 1.4, 1.6, 1.8, 2.0]

In [1@]: mylist[1]
Out[1e]: 1.2

In [11]:
Value (can be any data type)
0 1 2 3 4 5 Index (must be integer)
or
-1

It is sometimes useful to think of the index as labelling the boundary
between two boxes

Lists can be created in the following ways

In [9]: mylist = [1.0, 1.2, 1.4, 1.6, 1.8, 2.0]

1. Manually: In [1@]: mylist[1]
Out[1e]: 1.2
In [11]:
2. USing range(): In [1]: xrange = range(4,10)
In [2]: xrange[2]
Out[2]: 6
In [3]:

Or if you're careful, in a contracted form using range:

In [1]: pow2 = [x**2 for x in range(@,10)]

In [2]: print(*pow2)
© 149 16 25 36 49 64 81

In [3]:

3. Using np.linspace (very important for this subject)

8 import numpy as np
9 import matplotlib.pyplot as plt
A 10 import math as math
11
12
13 X = np.linspace(0,10,51)
14 y = x¥*¥2
15
16 plt.plot(x,y," .")
17
100 1 .
80 1 s’
B0 4 .-'
'ﬂﬂ 1 .I..
20 1 ..a'.
04 .'l-l"ll.'.'.
0 2 4 b 8 10

Style

Developing good programming style is key to well-running code
(and getting good marks in this subject!)

Three general rules:

1. Always comment your code!

2. Be clear, not clever

3. Divide work into bite-size chunks (functions) and
only give each chunk what it needs to know (i.e. use information hiding)

1. Always comment your code!

1
H g
(YOU WI” thanks yourself Iater) 3 Created on Thu Jul 21 13:17:16 2822
4
5 @author: Chris
)
1 7 Code to compute the average of the first N cubes
. 8 starting from @
2 import numpy as np 9
3 def three(n): 10
4 X3 = n**3 Aﬁ N
import numpy as np
> return x3 A 13 import matplotlib.pyplot as plt
B ¥l = 18 A 14 import math as math
7 x2 = 0 15
PR 16
8 for i in r‘ange(ﬂjxl+!]. 17 Function definitions
9 x2 = x2 + three(i) 18—
18 x2 = x2/(x1+1) 19
11 print(x2) 3? def powfn(n):
12 22 powfn = n**3
13 23 return powfn
24
25
26 Main script starts
27 e -
28
29
38 No= 18
31
32
33 rsum = @
34 for i in range(8,N+1):
35 rsum = rsum + powfn(i)
36
37
38 av = rsum/len{range(8,N+1))
39
49 print(“average:",av)

41

2. Be clear, not clever

22

23 x = float(input())

24 print("no") if x > 42 else print("yes") if x == 42 else print("maybe")
25

26

27 x = float(input())
28 if x>42:

29 print('no")

30 elif x==42:

31 print('yes")
32 else:

33 print('maybe")

34

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
a4
45
46
47
48
49
50
51
52
53
54
55
56

3. Divide work into bite-size chunks (functions) and
only give each chunk what it needs to know (i.e. use information hiding)

Main script starts
pi = math.pi

xrange = np.linspace(@,2*pi,100)
dx = xrange[2]-xrange[1]

sin_int = 0
for x in xrange:

print(x, (math.sin(x))**2)
plt.plot(x, (math.sin(x))**2,".")

sin_int = sin_int+(math.sin(x))**2*dx
av_sin = sin_int/(2*pi)

plt.show()
print("Average:",av_sin)

Now do the same for cos**2(x):
cos_int = 0
for x in xrange:

print(x, (math.cos(x))**2)
plt.plot(x, (math.cos(x))**2,"'.")

cos_int = cos_int+(math.cos(x))**2*dx
av_cos = cos_int/(2*pi)

plt.show()
print("Average:",av_cos)

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

Function definitions

def mysquav(input_fun,xrange):

dx = xrange[2]-xrange[1]
L = xrange[-1]-xrange[9]

fun_int = @
for x in xrange:

plt.plot(x, (input_fun(x))**2,'.")

fun_int = fun_int+input_ fun(x)**2*dx

mysquav = fun_int/L

return mysquav

Main script starts

pi = math.pi
xrange = np.linspace(9,2*pi,100)

av_sin = mysquav(math.sin,xrange)
plt.show()
print("Average sin**2(x):",av_sin)

av_cos = mysquav(math.cos,xrange)
plt.show()
print("Average cos**2(x):",av_cos)

The golden rule: never write the same
code segment twice!

Precision and numerical differentiation

How computers store real numbers
Machine precision
Types of errors

Finding numerical derivatives

How python 3 stores real numbers
Python stores real numbers in double-precision, floating point format. Each number
is a string of ones and zeros in the following form:

exponent fraction
sign (11 bit) (52 bit)
I Il
o o o
63 52 0

If we want to convert a number from this form to a real value
then the formula is:

value = (—1)%8" (1.b51b50.--b0)1,,1409 X 9e—1023

This is a bit hard to grasp in binary, so let’s imagine this would work in base 10
(the end result is the same):

2.5 1|10/9|9|2(5|0|0|0(0|0|0O|O(O(O|0O|O|O(0|0]|O

2.5x101 1|10/9|8|2(5|0|0|0(0|0|0O|O(O(O|0O|O(O(0O|0]|O

2.5x107 1|10/9|7|2(5|0|0|0(0|0O|0O|O(O(O|O0|O(O(0O|0]|O

2.5 x 1030 1|1/2|9|2(5|0|0(0(0|0|0O|O(O|O|0O|O(O(0O|0]|O

If two numbers get closer together, then eventually
the computer cannot distinguish them.

e.g.

2.500000000000000052 1/0|9(9(2|5(0(0(0|0(O(O|O|O(O(O|O

2.500000000000000057 1/0|9(9(2|5(0(0(0|0(O(O|O|O(O|O|O

The threshold at which two numbers become indistinguishable
is known as the machine precision €,

exponent fraction
sign (11 bit) (52 bit)
I Il
o [5) [5)
63 52 0

For double precision floats, the machine precision is €,, = 27°? ~ 2e — 16

In [3]: np.finfo(float).eps
Out[3]: 2.220446049250313e-16

In [4]:

(Important: the machine precision is not the smallest number that can be stored on the machine.)

The prevision only depends on the length of the fraction, whereas the smallest
number depends on the number of bits in the exponent

An error due to machine precision is a fractional or relative error — it tells us how much a number can be “off”
as a fraction of the number itself.

To see this, consider the example from earlier: The machine
cannot distinguish

2.500000000000000052 1/0(9/|9|2|5|0|0|0(0(O(O(O|O|O|O|0O|O|O(O(5

2.500000000000000057 1/0(9/9|2|5|0|0|0(0(O(O(O|O|O|O|0|O|O(O(5

But it has equal trouble distinguishing

2.500000000000000052 X 103° |1|1|2(9|2|5(0|o|o(o|o|0(0|0|0[0|0|0O[0O]|O|5

2.500000000000000057 x 103° |1|1(2|9(2|5(0|0(0|0|0|0O|0O|O|0O|0O|0|0O|0O|O|5

Two types of errors:

Round-off error occurs when errors in the storing of numbers accumulate.

This error depends on the machine, and on how the machine stores numbers.

There is generally not much that can be done about this*.

Truncation error occurs when there is a difference between what you compute
and the true answer. It occurs even when the round-off error is zero.

This error depends on your algorithm.

Reducing truncation error is practically the entire goal of all
numerical methods.

*there are actually a few things that you can
do to minimise round-off error but we’ll get
to them later

Topic 1: Numerical Differentiation

First rule of numerical differentiation: Avoid it if at all possible

Discussion question:
Imagine that we have a function f(x) which we can evaluate only numerically.

How can we compute the derivative f’(x)?

f(xﬂ

/

A

A

The formula for computing the derivative

f'() ~ 7 (Flx+) — f(x)

is known as a forward difference.

There are other options: for example, we could also try the balanced difference

1

F@) & s (flat+h) = f(z = b))

It turns out that the balanced difference method performs far
better than the forward difference method.

The forward difference method has both round-off error
and truncation error

Round-off evvor caleulatiown:
lmagine we can compute the function £(x) to machine precision €y

That Ls:

Truneatlon evvor caleulation:
From TagLor servles, we lknow thot

Fractional Error

1071

1077

107

1077

10

10-1

Forward difference

Balancea

difference

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44

