
Taylor Series (revision)



Power Series: A different way of thinking of functions

Another way of representing functions is as an infinite sum of powers of x. 

E.g. instead of writing

We can write

We can write any smooth function this way. Such a representation is called a power series.

All we need to find are the coefficients in the series.



Another example:

The function

Can be represented by the series



Why would we do this?

1. Because the series representation is often much simpler to deal with. 

Example:
If we know the coefficients of the series, then we can differentiate/integrate
very easily.

2. It gives us a powerful way to evaluate functions. (This is in fact how a lot of 
functions are evaluated)

E.g.  f(0.1)= 



We can think of a series representation as a sum of
polynomials. 
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f(x)=c0+c1x+c2x2

f(x)=c0+c1x

f(x)=c0

f(x)

The 1st term specifies the value of f at x = 0.

The 2nd term specifies the first derivative of f at x = 0.

The 3rd term specifies the second derivative of f at x = 0.

As we add more terms, the series converges to the “real” function. 
A truncated series is most accurate near the point x = 0.



Taylor Series
The power series expansion of a function f(x)
about a point x=x0 is called the Taylor series of f(x)
at x0. 
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f(x)=c0+c1(x-x0)+c2(x-x0)2

f(x)=c0+c1(x-x0)

f(x)=c0

x0



The Taylor series expansion of a function f(x) about x0 is:

Or:



Solution of nonlinear equations (a.k. root-finding)

Why this is sometimes difficult

Newton’s method (and why it can go wrong)

The importance of Bracketing

Bisection

The secant and false-position methods

Brent’s method (overview)



Very often we would like to find the 
solutions to equations of the form 

This is often called root-finding or zero 
finding.

If 𝑓𝑓(𝑥𝑥) is a quadratic equation (or even a cubic or quartic)
then there is an analytic solution. However things are not
usually that simple, and often we can only compute f(x) numerically.

zero



Things that make root-searching difficult:

1. Function doesn’t change sign

2. Function has a lot of zeros in a small area

3. Function has very large derivatives in the vicinity of a zero

4. Function is “pathological” or non-smooth



Newton’s Method
Newton’s method is almost the simplest algorithm that 
achieves rapid convergence to the root.

Advantages:

1. Simple to implement

2. Converges extremely quickly

Disadvantages:

1. Requires access to the derivatives

2. Is not a bracketed algorithm

3. In some situations can get “stuck”

zero

The idea is to start with an initial guess 
near the root, and use the derivatives to 
get a better guess. 



The algorithm:

1. Start with a point x0

2. Draw a tangent to the curve, and find 
where this intersects the x axis

3. This point becomes the next best guess. 
Repeat 

x

f(x)



Newton’s method algorithm:

1. Start with a point xn

2. The next point is

3. Repeat 
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Things that can go wrong 
with Newton’s method:

1. The derivative can become very small,
causing the predictions to rocket off somewhere
 
(i.e. the algorithm exceeds the brackets of the root)

2. The solutions might run away

2. You can land in a “cyclic” situation
and it doesn’t converge at all.



Convergence analysis of Newton’s method
How fast does this converge to the root?

To answer this, we would like to know how much the error
changes with each iteration.

Imagine that the zero is at a point 𝛼𝛼. The absolute error in the method at any iteration
is then given by

The Taylor expansion of f about 𝑥𝑥𝑛𝑛 is 

evaluated at 𝛼𝛼 this is

𝜖𝜖𝑛𝑛 = |𝑥𝑥𝑛𝑛 − 𝛼𝛼|

zero





Bisection
What happens if we’re happy with slower convergence, but would like something 
that is guaranteed to find a root? A good algorithm is then the bisection method.

The idea: suppose we start off knowing that the root is 
between two points. Such a root is said to be bracketed.

zero

Bisection Algorithm:

1. Bisect the interval

2. Choose the sub-interval that contains the root

3. Repeat

How to we do this? 
We choose the 
interval for which the 
function changes sign.





Bisection converges linearly. That is, if after n iterations
The root is known to be in an interval of size

Then after the next step it the interval will shrink to

𝜖𝜖𝑛𝑛

𝜖𝜖𝑛𝑛+1 =
1
2
𝜖𝜖𝑛𝑛

Because this is “to the power one”
we say that this is linear convergence.

𝜖𝜖𝑛𝑛

𝜖𝜖𝑛𝑛+1



Bisection is powerful but slow. It will always 
find at least one root, provided the root is 
bracketed. 

Note: If the function is not smooth then the 
bisection may converge on the singularity.



Bracketing
A useful step in many root-finding procedures is bracketing. We say
That a root is bracketed if there is an interval where we know the root is there.

Basic algorithm for bracketing roots inside an interval:

1. Divide the interval into a lot of sub-segments

2. Test each adjacent pair for a change in sign

3. If no roots are found, then split each interval in two, and repeat
zero

Important Tip: Before applying any root-finding procedure, 
you should run a Bracketing procedure.



The Secant Method
The secant method can achieve superlinear convergence while remaining relatively simple.

x

f(x)
The Secant Method
1. Begin with the two most recently
computed  points 𝑥𝑥𝑛𝑛 and 𝑥𝑥𝑛𝑛−1

2. Construct the secant line between them and find the 
point 𝑥𝑥𝑛𝑛+1 where it crosses the y axis

4. Repeat



Derivation of the secant method formula:



The secant method converges with order

So it is better than bisection, but not as good as Newton’s method. 

𝜖𝜖𝑛𝑛+1 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × 𝜖𝜖𝑛𝑛1.618034

The main disadvantages are:

1. The root does not remain bracketed

2. Cyclic behaviour is also possible.



The False Position Method
Very similar to the secant method, except we keep the root bracketed

x

f(x)
The False Position Method
1. Begin with the two points 𝑥𝑥𝑛𝑛 and 𝑥𝑥𝑛𝑛−1

2. Construct the secant line between them and find the 
point 𝑥𝑥𝑛𝑛+1 where it crosses the y axis

3. Keep as the new two points whichever pair {𝑥𝑥𝑛𝑛, 𝑥𝑥𝑛𝑛+1} 
or {𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛+1} brackets the root

4. Repeat

The convergence of the false position method is hard to compute
(and can change over the calculation) but is definitely super-linear.



Brent’s method (a.k.a the VanWijngaarden-Dekker-Brent Method)
Brent’s method combines the sureness of bisection with (strong) super-linear convergence.
It’s complicated to implement, so we just give an overview here of a scaled-down version:

Brent’s method (simplified)

1. Start with 3 points

2. Fit an inverse parabola to these three points

3. Check if the y=0 crossing of the parabola
lands inside the brackets. 

3a. If so, great! Take the
Smallest three points that bracket the root, and repeat.

3b. If not, do a bisection and repeat



Formulas for the inverse Quadratic Interpolation:

If our three points are a,b, and c, then the new point x where the 
Inverse parabola crosses the axis is (from numerical recipes, Eq. 9.3.2)

where

and

For a good explanation and derivation, see Oscar Veliz’s video 
https://www.youtube.com/watch?v=-bLSRiokgFk

https://www.youtube.com/watch?v=-bLSRiokgFk


Other important methods:

Dekker’s method:
Basically like Brent’s method, but uses a secant step instead of an inverse quadratic
(superlinear, but not very)

Ridder’s method:
Uses exponential interpolation to find the next root.
(quadratic convergence)

Halley’s method:
Newton’s method, but 2nd order (so uses a parabola instead of a straight line)
(cubic convergence)



Assignment 1 (Due end of Week 3):

Create a nonlinear equation solver that uses Newton’s method, but using a numerical derivative.

- Should be based on your Lab solutions to Labs 1 and 2

- The instructions are online under the “Assignments” tab – read them carefully
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