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Minimisation is in general more difficult than zero finding.
It has all the problems and instabilities of root finding and none of the advantages.

While finding a zero is pretty much unambiguous, when searching 
For a minumum you might get:

a) A local, not a global minimum (B, F)

b) A minimum/maximum on the edge of the domain (G) that is 
not the minimum that you want (D)

(Side note: we will talk of minimization, but this is the same problem
as maximization).



Bracketing minima
A minimum is numerically identified by the following pattern:

𝑎𝑎 𝑏𝑏𝑐𝑐

𝑓𝑓(𝑎𝑎)

𝑓𝑓(𝑏𝑏)

𝑓𝑓(𝑐𝑐)

Whenever 

we have bracketed a minimum.

Warning: we must make sure that 𝑎𝑎 < 𝑐𝑐 < 𝑏𝑏 at all times for this to work!

𝑓𝑓 𝑐𝑐 < 𝑓𝑓(𝑎𝑎) and 𝑓𝑓 𝑐𝑐 < 𝑓𝑓(𝑏𝑏) 



Routine for bracketing minima

Pseudocode:

function Mbracket(a,b,N)
a = left point of interval
b = right point of interval
n = Number of segments

h = width of each segment = (b-a)/n

Loop from i = 1 to n-1
 x = h*i
 If f(x)<f(x-h) and f(x)<f(x+h)
  bracket found, store x-h, x+h in blist
 end if
end for loop
return blist

Algorithm:

1. Divide the interval up into equal intervals

2. Test each triplet for a minimum

𝑎𝑎 𝑏𝑏



Minimisation from the derivative
Minima can be found by searching for zero crossings of the derivative

𝑎𝑎 𝑏𝑏

Advantages:
1. Fast, if close enough to the minimum

Disadvantages:
1. Unstable (more so than Newton’s method)
2. Difficult to maintain a bracket
3. Fails if the second derivative is also zero

𝑎𝑎 𝑏𝑏

Algorithm:
1. Create a function g(x) = df/dx
2. Find a minimum bracket for f
3. Find a zero bracket for g
4. Find the zeros of g, using Newton’s method,
Brent’s method etc., attempting to maintain the
zero bracket. If a step fails, return to the previous step and
rebracket the minimum of f. 



Golden-section search
This is a stable but reasonably quick method for minimisation.

To understand how this works, let’s go back to the bisection method.
Why do we choose the midpoint? 

A good reason for choosing the midpoint is that, as far as we know, the root 
is equally likely to be in each half of the interval.

Can we do the same for finding the minimum?

𝑎𝑎 𝑏𝑏
𝑐𝑐

Fundamental law* of numerical search:
(a.k.a Murphy’s Law of numerical search)

The thing you’re looking for will try to be in
the biggest interval of your search domain.

*not a law.



What happens if we start with a bracketed minimum. 
Which point should we choose next?

𝑎𝑎 𝑏𝑏𝑐𝑐

We would like to choose the next point d such that the 
two regions for the new bracket are equal in length.

𝑎𝑎 𝑏𝑏𝑐𝑐 𝑑𝑑

Possibility 1:

Possibility 2:

𝑎𝑎 𝑏𝑏𝑐𝑐 𝑑𝑑



𝑎𝑎 𝑏𝑏𝑐𝑐 𝑑𝑑

Possibility 1:

Possibility 2:

𝑎𝑎 𝑏𝑏𝑐𝑐 𝑑𝑑



𝑎𝑎 𝑏𝑏𝑐𝑐 𝑑𝑑

𝑊𝑊 𝑍𝑍



The best ratio to pick for the “midpoint” is 1/𝜙𝜙 along the bracketed interval,
where 𝜙𝜙 is the golden ratio

𝑎𝑎 𝑏𝑏𝑐𝑐 𝑑𝑑

𝜙𝜙 =
1 + 5

2
≈ 1.618 …

Golden-section search:

1. Start with a bracketed minimum [a,b]

2. Pick two new points
 c = b - (b-a)/ 𝜙𝜙

          d = a + (b-a) /𝜙𝜙

3.    If f(c) < f(d)
 minimum is now bracketed by a and d:
 a unchanged, b = d
Else If f(d)<f(c)
Minimum is now bracketed by c and b 
 b unchanged
 a = c
4. Repeat



The Golden-section search is

1. Slow (like bisection, it has a linear convergence)

2. Robust

Is there another method that is equally robust but has superlinear convergence?
 



Jarratt’s method
The idea: use parabolic interpolation to find the minimum.

𝑎𝑎 𝑏𝑏𝑐𝑐

Step 1

𝑎𝑎 𝑏𝑏𝑐𝑐

Step 2

minimum

𝑥𝑥

Jarratt’s method:
1. Start with a bracketing triplet a,b,c

2. Find the minimum of an interpolating parabola

3. Set a = whichever of a,b is closest.
 b = c
          c = x

4. Repeat from 1.

    

Formula for the minimum point x of a parabola 
through points a,b,c:



Jarratt’s method is superlinear  (convergence of 1.325),
but breaks easily: 

e.g. if the points are co-linear:

𝑎𝑎 𝑏𝑏𝑐𝑐



Brent’s method (of minimisation)

The idea: combines parabolic interpolation with a golden search

𝑎𝑎 𝑏𝑏𝑥𝑥

Brent’s method algorithm:
1. Start with three points that bracket the minimum
2. Do a parabolic interpolation
3. Repeat 2 while this is going well*
4.    If it’s not, do one step of a golden search, then
go back to step 2.

*a) the midpoint is within the brackets, and
 b) the three points are not co-linear, and
  c) The current step is smaller than half the second-last step

Brent’s method of minimisation combines robustness with speed, and is the “gold standard”
for 1D function minimisation.
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