Minimisation in 1D

How this is different to zero finding (and how it is the same)
Bracketing minima <—

~

Minimisation using first derivatives &—

Golden-section search &—

Jarrat’s method &—

LBrent's method (of minimisation) €&—

Minimisation is in general more difficult than zero finding.
It has all the problems and instabilities of root finding and none of the advantages.

(Side note: we will talk of minimization, but this is the same problem
as maximization).

While finding a zero is pretty much unambiguous, when searching
For a minumum you might get:

a) Alocal, not a global minimum (B, F) &—

b) A minimum/maximum on the edge of the domain (G) that is ‘
not the minimum that you want (D)

Bracketing minima
A minimum is numerically identified by the following pattern:

TW w Oug.dl:éhx‘bq

/‘e‘l(-e..,. : - Qo(‘u‘,\h{en"

*0 ‘\"44 MSA-: oo -&‘.wq KN\'(‘NR

anf = (),

Whenever

f(e) <f(a)and f(c) < f(b)

we have bracketed a minimum.

Warning: we must make sure that a < ¢ < b at all times for this to work!

Routine for bracketing minima

Algorithm:
1. Divide the interval up into equal intervals

2. Test each triplet for a minimum

Pseudocode:

function Mbracket(a,b,N) <—
a = left point of interval ‘&

b = right point of interval
n = Number of segments

h = width of each segment = (b-a)/n

Loop fromi=1ton-1
X =h*i &
If f(x)<f(x-h) and f(x)<f(x+h) <
" bracket found, store x-h, x+h in blist
endif—= T - T -
-end for loop —

return blist &—

Minimisation from the derivative &
Minima can be found by searching for zero crossings of the derivative

A
6

v

a b a b [
Algorithm:
Advantages: 1. Create a function g(x) = df/dx &
1. Fast, if close enough to the minimum 2. Find a minimum bracket for f<—

3. Find a zero bracket for g £&—

4. Find the zeros of g, using Newton’s method,

Brent’s method etc., attempting to maintain the

zero bracket. If a step fails, return to the previous step and
rebracket the minimum of f.

Disadvantages:

1. Unstable (more so than Newton’s method) &~
2. Difficult to maintain a bracket £ -

3. Fails if the second derivative is also zero <—

Golden-section search
This is a stable but reasonably quick method for minimisation.

To understand how this works, let’s go back to the bisection method.
Why do we choose the midpoint?

A/\ Fundamental law* of numerical search:
[(a.k.a Murphy’s Law of numerical search)
Y4 The thing you’re looking for will try to be in

‘((—>
f{ u the biggest interval of your search domain.

A good reason for choosing the midpoint is that, as far as we know, the root
is equally likely to be in each half of the interval.

/
\u
\

Can we do the same for finding the minimum?

*not a law.

What happens if we start with a bracketed minimum. Possibility 1:

Which point should we choose next? 1

l

We would like to choose the next point d such that the t
two regions for the new bracket are equal in length.

’(\41 ofe¥ . >
b a C dri b
.V/ , CE—
a C H H N . I < 3
. pt i‘b Possibility 2: = ,.e.b.-_\ \

v

Possibility 1:
4

Possibility 2:

W+2 =2 L-W = 2 =L -2u.
R
L, = Jw
= W -2 — L == oL
= = - =W E (- ¥
- 5 L
L&‘\' \(= -\-Al) T\ua\ \{ = L\:}:‘—
- L=

The best ratio to pick for the “midpoint” is 1/¢ along the bracketed interval,

where ¢ is the golden ratio

1++5 e
= ——~1618...

v

Golden-section search:

1. Start with a bracketed minimum [a,b]

——

c=b-(b-a)/ ¢
d=a+(b-a) /¢
T

L

2. Pick two new points]

3. Iff(c) < f(d)
minimum is now bracketed by a and d:
a unchanged, b =d ’(\ {
Else If f(d)<f(c) T
Minimum is now bracketed by c and b
b unchanged ‘
a=c
4. Repeat

The Golden-section search is
1. Slow (like bisection, it has a linear convergence)

2. Robust

P————=

Is there another method that is equally robust but has superlinear convergence?

Jarratt’s method
The idea: use parabolic interpolation to find the minimum.

———

Jarratt’s method:
1. Start with a bracketing triplet a,b,c

Step 1

2. Find the minimum of an interpolating parabola |¢-

~—

3. Set a = whichever of a,b is closest.
b=c
c=X

x ¢ b 4. Repeat from 1.

] L/ Formula for the minimum point x of a parabola
through points a,b,c:

i‘ L= aPl0) = f©)] = (b= ePLF(b) — f(a))
— (

1 (
2 (b=a)lf(b) = f(e)] = (b=)[f(b) = f(a)]

Jarratt’s method is superlinear (convergence of 1.325),

———

but breaks easily:

e.g. if the points are co-linear:

Q

a

oy
v

Brent’s method (of minimisation)

The idea: combines parabolic interpolation with a golden search

K J

Brent’s method algorithm:
1. Start with three points that bracket the minimum

4
\ 7| 2. Doa parabolic interpolation

— 3. Repeat 2 while this is going well* &—

4. |Ifit’s not, do one step of a golden search, then

go back to step 2.

4/
a X b *a) the midpoint is within the brackets, and
——> b) the three points are not co-linear, and <~

c) The current step is smaller than half the second-last step
— — _—

v

Brent’s method of minimisation combines robustness with speed, and is the “gold standard”
for 1D function minimisation.

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14

