
Minimisation in N dimensions

Why this is very hard

Direction Set methods

Powell’s search

Simplex Search (Nelder-Mead)

Other approaches

In general, minimisation in N>1 dimensions is much harder.

1. Bracketing is inherently almost impossible

In 1D you need two points for maintaining a bracket.
In 2D you need a line, in 3D you need a surface etc.

+ it is almost impossible to stop the root from
“leaking out the edges”

2. All the instabilities and problems from 1D are multiplied

3. Bisection, which relies on bracketing, is generally unfeasible

4. You have N times the number of unknown variables,
so everything is in general much slower

Direction Set methods: overview

These methods all follow the following strategy:

1. Pick a direction in the parameter space

2. Minimise the value of the function along this direction
(using 1D minimisation)

3. Switch to a new direction

4. Repeat

The methods differ in how they choose and maintain the
set of directions that they’re minimising along.

Each direction set method relies on a search of the function

Where 𝒙𝒙(𝑡𝑡) are points along the line given by

Here 𝐱𝐱𝑛𝑛 is the starting point

 𝐩𝐩𝑖𝑖 is the i-th vector direction of the line

Both x and p are N-dimensional

Simple coordinate search

Here we pick a fixed set of directions
corresponding to the unit coordinate
axes:

In 2D:

Simple search algorithm:

Loop over i = 1…N
 Starting from 𝐱𝐱𝑛𝑛, minimise 𝑓𝑓(𝒙𝒙) along the line

 pick new 𝐱𝐱𝑛𝑛 as the minimum point
Repeat until converged

𝐩𝐩1 = 1,0
𝐩𝐩2 = (0,1)

In 3D: 𝐩𝐩1 = 1,0,0
𝐩𝐩2 = 0,1,0
𝐩𝐩3 = 0,0,1

This will work really well for some situations…

But not so well for others.

Powell’s search:
1. Loop over the different directions 𝑖𝑖 = 1 to N
 Starting at 𝐱𝐱0, perform a minimum search
 in direction 𝐩𝐩𝑖𝑖 . Call the minimum 𝐱𝐱𝑖𝑖, with value f(𝐱𝐱𝑖𝑖).

 start the next search at 𝐱𝐱𝑖𝑖

2. Perform a final minimum search starting at the original point 𝐱𝐱0
and going in the direction towards the final point 𝐱𝐱𝑁𝑁

3. Check for convergence with |𝐱𝐱0 − 𝐱𝐱𝑖𝑖| < 𝑡𝑡𝑡𝑡𝑡𝑡

4. If not converged, find the direction 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 with the biggest decrease, i.e. where f(𝐱𝐱0)-f(𝐱𝐱𝑖𝑖)
is largest.

5. Replace 𝐩𝐩𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐱𝐱0-𝐱𝐱𝑁𝑁, then repeat the whole process.

Powell’s direction-set method
This is one of the “gold-standard” methods for multi-dimensional search.

The central idea: update the direction set each time,
replacing the best direction each time with the vector
connecting the old point to the new point.

Advantages of Powell’s method:

 It is pretty robust

 No derivatives are needed

 It is linear, but is quick, converging on the minimum.

 The search time scales linearly with the number of dimensions

Disadvantages:

 You might not get the “right” minimum

 it can sometimes get “stuck” in an analogous way to Newton’s method.

 (A warning for newcomers):
 It is very dependent on your 1D minimisation working flawlessly

The Downhill Simplex method (Nelder-Mead algorithm)
This is a completely different approach which works really well and is extremely robust.

The idea: create an “amoeba” which tries out points in the surrounding space,
then either expands to crawl downhill or contracts around the minimum.

Definition: a simplex is a set of N+1 points in N dimensions.

In 2D:

In 3D:

The Nelder-Mead algorithm gives a set of rules to transform the
simplex so that it converges on a minimum.

First note that for a given simplex we can order the vertices from lowest to highest

and compute the centroid of all the x’s but the highest one:

Things the simplex can do:

Reflect
The highest
point through
the centroid

Expand a reflected point

Contract a reflected point on the outside
or inside of the simplex

Shrink
Towards the best point

Transformation sequence

Good but not great

great
Expand, retest and
Form a new simplex with
whichever new point is better,
Discard the worst point

Keep the reflected point
Discard the worst point

Bad, but not that bad Contract outside the simplex,
Keep it if it improves, discarding the
worst point, otherwise Shrink

terrible Contract inside the simplex,
Keep it unless it’s still terrible,
Discarding the worst point,
otherwise Shrink

Algorithm for simplex search:

1. Order the vertices from best to worst
2. Test for convergence
3. Transform the simplex (below)
4. Repeat

1. Reflect

Compute and
compare it to the existing values.

If is…

Other methods:

Steepest descent method
 -basically “go downhill, increase the stepsize as you do so,
 then backtrack when you start going uphill”

Conjugate gradient methods (Fletcher-Reeves algorithm)
 - concentrate on moving downhill in an “optimal” way

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15

