# Integration and quadrature

Riemann sums and why they are bad

The trapezoidal rule and Simpson's rule

The adaptive trapezoidal algorithm

Richardson extrapolation and Romberg integration  $\leftarrow$ 

Gaussian quadrature

#### **Riemann integration**

This is the simplest approach, and comes from Riemann's definition of integration, as the limit of a sum over *intervals of length*  $\Delta x$ :

$$\int_{a}^{b} f(x) \mathrm{d}x = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}) \Delta x$$

Riemann integration:

1. Divide the interval [a,b] into n subsegments of length

$$h = \frac{b-a}{n} - \frac{b-a}{n}$$

2. Perform the sum

$$\int_{a}^{b} f(x) \mathrm{d}x \approx \sum_{j=0}^{n-1} f(a + (j+1/2)h)h$$



•

## This algorithm is

- Really quick to code
- Really bad (the error is of order  $O(h^0)$ !!).

Number of lowers: 
$$u = \frac{b-a}{h}$$
  
Total error  $\left(\frac{b-a}{h}\right) \times O(\lambda)$ 

$$\sim O(h^{\circ}) \sim O(1)$$



The trapezoidal rule

This is the "rule of choice" for anything you need done quickly.

The idea: Break the interval up n into equal intervals ("panels"), then sum the areas of the trapezoids.

Area of each trapezoid:

Area = 
$$\frac{h}{2}(f_i * f_{iri}) +$$



$$\begin{aligned} & S_{0} \quad \text{Total Aren} = \sum_{j=0}^{n-1} \frac{h}{2} \left( f_{i} + f_{i+1} \right) = \frac{h}{2} \left[ f_{0} + f_{1} + f_{1} + f_{1} + f_{2} + f_{3} + \dots + f_{n} \right] \\ & = \frac{h}{2} \left[ f_{0} + 2f_{1} + 2f_{2} + \dots + 2f_{n-1} + f_{n} \right] \end{aligned}$$

The trapezoidal rule:

1. Break the interval into n panels of length

 $h = \frac{b-a}{n}$ 

with nodes at  $x_j = a + jh$ , and function values  $f_j = f(x_j)$ 

2. Form the sum

$$I = \frac{h}{2} \left( f_0 + 2f_1 + 2f_2 + \dots + 2f_{n-1} + f_n \right)$$

The error in this method is *quadratic: that is,* 

$$I = I_{\text{exact}} + O(h^2)$$

E

<u>Simpson's rule</u>: (we will derive this later) This rule involves interpolating each set of three points by a *parabola*:

## Simpson's rule:

1. Break the interval into n panels of length

 $h = \frac{b-a}{n}$ 

with nodes at  $x_j = a + jh$ , and function values  $f_j = f(x_j)$ 

2. Form the sum

$$I = \frac{h}{3} \left( f_0 + 4f_1 + 2f_2 + 4f_3 + \dots + f_n \right)$$



The trapezoidal rule:

1. Break the interval into n panels of length

 $h = \frac{b-a}{n}$ 

with nodes at  $x_j = a + jh$ , and function values  $f_j = f(x_j)$ 

2. Form the sum

$$I = \frac{h}{2} \left( f_0 + 2f_1 + 2f_2 + \dots + 2f_{n-1} + f_n \right)$$

What if we want to work out the integral to within a given tolerance?

The error in this method is *quadratic: that is,* 

$$I = I_{\text{exact}} + O(h^2)$$

#### The refined trapezoidal rule

This is a great "workhorse" numerical method. The idea is that you start with a quadrative interpolation, then keep inserting points until the required tolerance is reached.

$$I_n = \frac{h}{2} (f_0 + 2f_1 + 2f_2 + \dots + 2f_{n-1} + f_n) \longleftarrow$$

$$I_{2n} = \frac{h}{4} (f_0 + 2f_{1,1} + 2f_1 + 2f_{1,2} + 2f_2 + \dots + 2f_{n-1} + 2f_{1,n} + f_n) \xrightarrow{a} \frac{1}{2} (f_0 + 2f_1 + 2f_2 + \dots + 2f_{n-1} + 2f_{1,n} + f_n) \xrightarrow{b} \frac{1}{2} = \frac{h}{4} (f_0 + 2f_1 + 2f_2 + \dots + 2f_{n-1} + 2f_{n-1} + 2f_{1,n} + f_n) + \frac{h}{4} \times 2(f_{e_1e} + f_{1,2} + \dots + f_{e_n}) = \frac{1}{2} I_n \xrightarrow{a} f_{e_1e_1} + \frac{h}{2} \sum_{j=1}^{n} f_{e_1e_1} + \frac{h}{2$$

## Refining trapezoid algorithm

1. Compute the trapezoidal rule with n panels and interval size  $h_n$ 

$$I_n = \frac{h_n}{2} \left( f_0 + 2f_1 + 2f_2 + \dots + 2f_{n-1} + f_n \right) \boldsymbol{<}$$

2. Compute the nodes of the intermediate points

$$x_{i,j} = \frac{1}{2}(x_j + x_{j+1})$$
,  $j = \{1...n\}$ 

3. Form the new integral, stop if converged

$$I_{2n} = \frac{1}{2}I_n + \frac{h_n}{2}\sum_{j=1}^n f(x_{i,j}) \leftarrow$$

4. Merge the intermediate points  $x_{i,j}$  with the set of nodes  $x_j$ ,

5. Set  $h_{2n} = h_n/2$  and repeat from Step 2.

#### **Richardson extrapolation**

The trapezoidal rule is an *approximation* to the exact value of the integral. That is,

$$I_{\rm T} = I_{\rm exact} + {\rm Error}(h)$$
  
 $1 - {\rm Trajectezo.da}($ 

We can show that the error is *quadratic in h*, that is

$$I_{\rm T} = I_{\rm exact} + c_1 h^2 + O(h^4) \quad \longleftarrow$$

We can derive *new rules of integration* by trying to <u>cancel out</u> this error.

To see how this works, let's see what happens when we halve the stepsize h:

$$I_{T}(h) = I_{exact} + c_{1}h^{2} \leftarrow I_{T}(\frac{h}{2}) = I_{exact} + c_{1}(\frac{h}{2}) \leftarrow I_{T}(\frac{h}{2}) \leftarrow I_{T}(\frac$$

of So  

$$I_{\tau}\left(\frac{v}{z}\right) = I_{exact} + \frac{1}{4}c_{\tau}v^{2}$$

$$\Rightarrow 4 I_{\tau}\left(\frac{v}{z}\right) = 4 I_{exact} + c_{\tau}v^{2} \leftarrow (z)$$
Surface (2) - (i):  

$$4 I_{\tau}\left(\frac{v}{z}\right) - I_{\tau}\left(v\right) = 4 I_{exact} + c_{\tau}v^{2}$$

$$I_{exact} + c_{\tau}v^{2}$$

$$= 4 I_{\tau}\left(\frac{v}{z}\right) - I_{\tau}\left(v\right) = 3 I_{exact} + O\left(\frac{a}{z}\right)$$

$$= 1 I_{exact} = \frac{1}{3}\left[4 I_{\tau}\left(\frac{v}{a}\right) - I_{\tau}\left(v\right)\right] + O\left(\frac{a}{z}\right)$$

$$= I_{eew}$$

We have found a new rule:



Can we design higher order schemes? The answer is yes -This is called <u>Romberg integration</u>

$$I_{1}(h) = I_{T}(h)$$
$$I_{2}(h) = \frac{1}{3} \left[ I_{1}(\frac{h}{2}) - I_{1}(h) \right]$$

Now,

$$16 \operatorname{I}_{2}\left(\frac{h}{2}\right) - \operatorname{I}_{2}(h) = (5 \operatorname{I}_{exact} + O(h^{6})).$$
  

$$\operatorname{I}_{exact} = \frac{1}{16} \left[ (6 \operatorname{I}_{2}(\frac{h}{2}) - \operatorname{I}_{1}(h) \right].$$

In general  

$$I_{j}(h) = I_{\text{exact}} + c_{j}h^{2j}$$

$$I_{j}(\frac{h}{2}) = I_{\text{exact}} + c_{j}\left(\frac{h}{2}\right)^{2j}$$

$$I_{j+1}(h) = \frac{1}{2^{2j} - 1} \left[ 2^{2j} I_j(\frac{h}{2}) - I_j(h) \right]$$

Higher-order quadrature schemes can be derived from the trapezoidal rule. Each iteration pushes the error out to a higher order in h.

#### **Romberg integration**

1. Compute the integral according to the trapezoidal rule with stepsize h, and 2 panels

$$R(n,0) = I_T(h)$$
Lorder of method.

- 2. While the integral is not converged:
- Set new panel size  $h_n = \frac{b-a}{2^n}$
- Compute the integral according to the trapezoidal rule with stepsize  $h_{n+1}$ , (2n panels):

 $R(n+1,0) = I_T(h_{n+1})$ 

• Perform the extrapolation to get the integral according to the higher-order rules:

$$R(n+1,j) = \frac{1}{2^{2j}} \left[ 2^{2j} \underbrace{R(n+1,j-1) - R(n,j-1)}_{j} \right] \quad j = 1...n+1$$

• Update n = n+1. The final term I = R(n, n) is the value of the integral, Repeat Step 2.

#### Gaussian Quadrature

All our quadrature schemes thus far have involved picking Equally-space points. In each case we have ended up with a formula like

$$I = \frac{h}{2} \left( f_0 + 2f_1 + 2f_2 + \dots + 2f_{n-1} + f_n \right)$$

$$= \frac{h}{2}f_0 + 2\frac{h}{2}f_1 + 2\frac{h}{2}f_2 + \dots + 2\frac{h}{2}f_{n-1} + \frac{h}{2}f_n$$

We can get faster, more accurate integrals if we are *free to pick our points as we like*. This idea leads to Gaussian quadrature.

Important point: Most Gaussian quadrature schemes are derived for the interval [-1,1]. We'll do the change of variables later.



Imagine that we pick a set of points  $x_j$ . We can approximate our function by Lagrange interpolation:



Note that when f is a polynomial of order <n, this approximation is *exact*.

=  $\sum_{i=1}^{\infty} f_i \int \lambda_i(x) dx$ 



How do we choose the points  $x_j$ ? It turns out that a *really, really good choice* is that we choose them to be the zeros of orthogonal polynomials.



#### **Orthogonal polynomials**

Consider a set of polynomials  $p_j(x)$  of degree 1...n. We say that This set is *orthogonal over an interval* [-1,1] if



The type of polynomial depends on the weight function w(x):

|   | Weight $w(x)$            | Type of Polynomial |   |
|---|--------------------------|--------------------|---|
| _ | <b>5</b> 7 1             | Legendre           | - |
|   | $\frac{1}{\sqrt{1-x^2}}$ | Chebyshev 🦟        |   |
|   | $e^{-x^2}$               | Hermite 🔭          | 1 |
|   | $x^{\alpha}e^{-x}$       | Laguerre 👉         | = |



All these have been computed and their zeros tabulated.



Number of points, n

Once we have the polynomials, we can look up the zeros and the weights, and evaluate

 $\int_{-1}^{1} f(x)w(x)\mathrm{d}x \approx \sum_{j=1}^{n} w_j f(x_j)$ 

We usually have to *change the interval* of integration. This involves the change of coordinates

Points, x<sub>i</sub> Weights, w; 0 6 2

2

#### **Gaussian quadrature**

To integrate functions of the type

$$\int_{a}^{b} f(x)w(x)dx$$

$$\int_{a}^{b} w(x) = 1 \quad \text{is flew two cone.}$$

1. Choose an appropriate set of polynomials for the weighting, and the number of points n at which you are using to integrate the function

2. Evaluate the sum

$$\int_{a}^{b} f(x)w(x)dx \approx \frac{b-a}{2} \sum_{j=1}^{n} w_{j}f\left(\frac{b-a}{2}x_{j} + \frac{a+b}{2}\right)$$

1

where the  $w_i$  and  $x_j$  are the tabulated weights and zeros for the expansion.

## Gaussian quadrature is

- 1. Simple to implement
- 2. Extremely fast
- 3. More accurate (by far) than almost any other method

# Why Gaussian quadrature works so well

A Gaussian quadrature with n points integrates polynomials of *degree less than 2n exactly*. That is, it is unreasonably effective in "capturing the bumps" of a function.

To see this, consider integrating a function f(x) with polynomial order < 2n. We can write

$$f(x) = q(x)p_n(x) + r(x)$$
  
order (forgonal of  
order n  
f(x) = q(x)p\_n(x) + r(x)  
order n  
f(x) dx =  $\int q(x)p_n(x) dx + \int r(x) dx$   
We expand the quotient in terms of  
the orthogonal polynomials  
 $q(x) = \sum_{i=0}^{n-1} q_i P_i(x)$ 

(x) dr P;(2) 9(2) 0 because 1+11 ~

