
Computational linear algebra and systems of linear equations

What computational linear algebra is for

What we do in this section (and what we don’t)

Linear algebra in python

Solution to the eigenvalue problem

 - Finding the largest eigenvalue (basic power method)

 - Finding the smallest eigenvalue (inverse power method)

 - Finding the complete set of eigenvalues (QR iteration)



Stiffness matrix
(known)

Forces acting
at each point
(known)

Displacement
of each point
(unknown)

Almost all models of physical systems can be expressed as
a set of simultaneous equations.

To solve these types of problems we 
need to numerically solve these 
(typically very large) matrix equations.



What we will not cover here:

 The “under the hood” methods of basic matrix manipulation, including:
  
  - Numerical matrix multiplication
  - Gaussian elimination
  - Simple matrix inversion
  - Matrix decomposition

What we will focus on instead:

 Using in-built Python routines to do all the “basic stuff” above

 An intro to the more advanced stuff 

  - the eigenvalue problem
  - manipulating sparse matrices
 
 



Matrices in python

The basic form that python uses to store matrices is the numpy 
array.

We use nested square brackets to define the columns and rows,
with commas separating the elements:

To define a column vectors and row vectors we need to remember to 
Keep the nested brackets, e.g.

The shape attribute returns how many columns and rows the matrix has.



Basic matrix manipulations are built-in to numpy:

Addition/subraction:

Matrix transpose uses the “.T” attribute:

(This means don’t name a matrix “T” – python will not get confused, but you might)

Note that A*B is not matrix multiplication – it just multiplies
the two matrices element by element.



Matrix multiplication can be done in a few ways:

1. using the @ notation 

2. Using the “dot” attribute

3. Using the inbuilt numpy matmul function

All these ways are equivalent.



For more complex matrix operations we use the linalg package from the scipy module:

Using this we can do matrix inversion: And solve linear systems directly:



An important quantity in linear algebra is the matrix norm, which 
expresses the “aggregate size” of the elements in a matrix. 

For a matrix A with elements 𝐴𝐴𝑖𝑖,𝑗𝑗, the 𝐿𝐿𝑝𝑝 norm of A is defined by

• The 𝐿𝐿1 norm (known as the “manhattan distance”) is the sum of the
 absolute values in the matrix

• The 𝐿𝐿2 norm (the “Euclidean norm) is the square root of the 
sum of the squares of all the elements

• The 𝐿𝐿∞ norm is equal to the largest value in the matrix.

In python, norms can be computed using the 
scipy linalg package:



Matrix decompositions
An important aspect in most computational linear algebra is being able
To decompose a matrix in terms of other, simpler matrices.

The LU decomposition expresses a matrix as the product of two simpler matrices:

We will outsource the decompositions to the scipy linalg package:



The QR decomposition decomposes a matrix into an orthogonal matrix Q and a right-upper-triangular
matrix R:

Aside: an orthogonal matrix Q is one for which the 
Inverse is equal to its own transpose: 



Computational expense for basic matrix manipulations
The time taken for a matrix operation (inversion, decomposition, etc)
can be characterised by the computational complexity, which is related to
the size of the matrix.

Here we give the complexity for each of the major operations, for
a dense, unstructured matrix:

Addition/subtraction of two 𝑛𝑛 × 𝑚𝑚 matrices

Multiplication of a 𝑝𝑝 × 𝑚𝑚 by a 𝑚𝑚 × 𝑛𝑛 matrix

Inversion of an 𝑛𝑛 × 𝑛𝑛 matrix:

LU decomposition of an 𝑛𝑛 × 𝑛𝑛 matrix:

QR decomposition of an 𝑛𝑛 × 𝑛𝑛 matrix:



The eigenvalue problem
This is one of the major computational problems in linear algebra.

Let A be a (square) n x n matrix. A nonzero vector v is an eigenvector of A if,
Recall: For some scalar 𝜆𝜆 , v satisfies

The scalar number 𝜆𝜆 (which may be zero) is called 
an eigenvalue of A, associated with v.

The set of all eigenvalues of A is called the spectrum of A. 

Eigenvalues and Eigenvectors are extremely widely used 
in all branches of engineering and the physical sciences

Eigenvalue Frequency

Eigenvector Mode of vibration



Sometimes a linear transformation changes the magnitude of a vector
without affecting its “direction”. Such a vector is called an eigenvector of the matrix.  

A matrix can be thought of as a linear transformation of a vector



For large matrices there will be a lot of eigenvalues, and their computation 
can be difficult.

Often we are interested only
in the largest eigenvalue, or the smallest eigenvalue.

In this situation Iterative Power methods can be used.



The Basic Power Method
This algorithm computes the largest eigenvalue and eigenvector of a matrix.

The idea: each transformation by a matrix A 
stretches the vector in the direction of 
the largest eigenvector* vmax of A.

If we keep on applying A to any vector, then eventually 
this vector will point in the direction of v. 

*vector with the largest eigenvalue

Basic Power Iteration

1. Start with a vector v𝑘𝑘 (preferably randomized)

2. Apply

3. Compute                                   , where 𝜇𝜇𝑘𝑘 = 𝑢𝑢 ∞ 

4. Repeat from step 2 until converged.

The quantity 𝜇𝜇𝑘𝑘 converges to the largest eigenvalue, with eigenvector 𝑣𝑣𝑘𝑘 .



The inverse power method

The idea: the eigenvalues of A−1 are the reciprocals of the eigenvalues of A.
We can therefore find the smallest eigenvalue of A:

Inverse Power Iteration

1. Start with a vector v𝑘𝑘 (preferably randomized)

2. Apply

3. Compute                                   , where 𝜇𝜇𝑘𝑘 = 𝑢𝑢 ∞ 

4. Repeat from step 2 until converged.

The quantity 1/𝜇𝜇𝑘𝑘  converges to the smallest eigenvalue of A, with eigenvector 𝑣𝑣𝑘𝑘 .



The QR algorithm
This gives the complete set of eigenvalues of A. The only problem is that it is a bit slow to
converge, and is computationally expensive if the matrix is large.

QR Iteration

1. Form the QR decomposition

𝑄𝑄𝑘𝑘𝑅𝑅𝑘𝑘 = 𝐴𝐴𝑘𝑘

2. Create a new matrix

𝐴𝐴𝑘𝑘+1 = 𝑅𝑅𝑘𝑘𝑄𝑄𝑘𝑘

3. Repeat from Step 1 until converged.

The eigenvalues are given by the diagonal components of 𝐴𝐴𝑘𝑘 . 



Why does this work? The QR decomposition does a power iteration,
but for a set of orthogonal transformations simultaneously



Other important approaches:

• Shifted Power method
 - modification of the power method to find the complete spectrum

• The Rayleigh Quotient method
 - A fast iteration method for finding the largest eigenvalue

• The Shifted QR method 
- The convergence of the QR method depends on the ratios between eigenvalues being large.

 Introducing a “shift” to the eigenvalues improves the convergence

• Arnoldi iteration
 - Combines power iteration with Gram-Schmidt orthogonalisation to compute
 the full spectrum (very fast for Sparse matrices)
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