Sparse linear systems

Sparse matrices

Techniques of storage

Creating sparse matrices in python

Algorithms for sparse matrices in python
- elementary matrix operations

- decomposition and other methods

If most of the elements in a matrix are zero, then it makes no sense to store them.
In addition, a lot of the matrix operations will be elementary.

Dense Matrix Sparse Matrix
1 |2 [31]|2 |9 |7 |34]|22|11 |5 i 0= 13 s I | 13
110924 |3 |2 |2 |3 |3 [2 |1 Wl (4 |- - 11 |12 |
3 |9 |13|8 [21|17(4 |2 |1 |4 R R O O C N R
8 [32|1 |2 |34[18|7 |78|10|7 8 |- |- | |3 |
9 |22|3 |9 |8 [71|12]|22|17|3 9 1 17
13(21|21|9 |2 [47]|1 |81|21]|9 13(21|. |9 |2 [47|1 (81|21 (9
21 (12|53 |12 |91 |24 [81|8 |91 |2
61|8 |33|82|19|87|16|3 |1 |55 e |- |- |19|8 [16). |. |55
54 |4 |78 |24 |18 |11 |4 |2 |99|5 54(4 |. |. |. M
13(22(32|42|9 [15]9 |22(1 |21 . e 121 1. 1. | 122]. |2

Instead of storing the full matrix, we store only the non-zero elements.

From https://cmdlinetips.com/2018/03/sparse-matrices-in-python-with-scipy/

() (b) ©
N L1
N []
@ (&) ©
© (h) (i)
) -
DDD DEI:Il:lD
:IEI =
[O Eil:llzl
0 DUEEII:ID
I:I a
() ()

Sparse matrices can be stored using different protocols:

coo_matrix: COOrdinate format matrix

csc_matrix: Compressed Sparse Column matrix
csr_matrix: Compressed Sparse Row matrix
bsr_matrix: Block Sparse Row matrix

dia_matrix: Sparse matrix with DIAgonal storage
dok_matrix: Dictionary Of Keys based sparse matrix.

lil_matrix: Row-based linked list sparse matrix

Different protocols are more efficient for different algorithms.
We will discuss two of these: the COO format and the CSC format

The Coordinate format matrix format (COQ)
In this storage protocol, the indices are stored as a double-entry list,
And the elements are stored as a list of the same length. E.g.

Matrix How this is stored
| 1 _ - 3 _ . _ 9 _ _ X | _ _ _ ‘

11 4 |. 2 |1 | (0,0) 1
T T s e || (0,2) 3

'8 3 | (0,4) 9

| u -

3l21]. |9 |2 laz]1 |81]21]0

19 | a8 | 16 | | 85

] — .

The COO is a natural way to think about sparse matrices, but is not efficient for matrix operations.

Column

© Matt Eding

https://matteding.github.io/2019/04/25/sparse-matrices/

Compressed Sparse Column matrix (CSC) format
In this protocol the non-zero entries are stored in the following way:

Store the Data in an array going down the columns and removing the zeros
Store the Row index of each element in the Data array
Create an array where adjacent pairs give slices into the Data array.

Matrix How this is stored
: v 2 Data:
0 0 3

Row indices:

Index pointers:

[1,4,5,2,3,6]
[0,2,2,0,1,2]

[OI2I316]

Index Pointers

Pointer

2
I I
I I
(IR N Sy

F=="=-=-=r==

Indices

| R N

I I I I

~ I I I
e T
I I I

3_ _ _

e | B

© Matt Eding

https://matteding.github.io/2019/04/25/sparse-matrices/

Which format to use? Two things to keep in mind:

1. Some formats are more efficient than others for certain operations.

We recommend sticking to CSC or CSR formats for linear algebra

2. It really doesn’t matter — python will let you know if you start using an inefficient
matrix format.

You can convert between formats using
A.tocsc()
A.tocoo()

.etc.

The Sparse Matrix modules in python

We will be relying on the sparse module from scipy,
which itself contains a sparse linear algebra module o008 DWZEE CUMEY 22 G2

: from scipy import sparse as sp
: from scipy.sparse import linalg as sla

: row = np.array([0,0,1,1])
: col = np.array([0,1,0,1])

import numpy as np
from scipy import sparse as sp

from scipy.sparse import linalg as sla

: entries = np.array([2.,2.,2.,2])

: A = sp.csc_matrix((entries, (row,col)))

Note: the sparse “linalg” module is different from the

regular scipy linalg module. In [3]: A

<2x2 sparse matrix of type '<class 'numpy.floated’>’
with 4 stored elements in Compressed Sparse Column format>

Sparse matrices in python are stored in their own data g)pr‘i”ﬁfg)

type, according to the compression protocol (COO, CSC, ?; 2.0
etc) 1) 2.0

Building basic sparse matrices in python
Sparse matrices can be constructed directly using

the type of sparse matrix you want

a list of row indices
a list of column indices

a list of the data entries

A = sp.csc_matrix((entries,(row,col)))

: import numpy as np
: from scipy import sparse as sp
: from scipy.sparse import linalg as sla

: row = np.array([0,0,1,1])
: col = np.array([0,1,0,1])

: entries = np.array([2.,2.,2.,2])

: A = sp.csc_matrix((entries, (row,col)))
In [3]: A

<2x2 sparse matrix of type '<class 'numpy.floaté4'>’
with 4 stored elements in Compressed Sparse Column format>

In [4]: print(A)
(0, 9) 2.0
(1,) 2.0
(0, 1) 2.0
(1, 1) 2.0

Larger sparse matrices can be defined using the “shape”
option ...: A3 = sp.csc_matrix((entries, (row,col)),shape=(4,4))

In [24]: A3

<4x4 sparse matrix of type '<class 'numpy.floatéed'>'
with 4 stored elements in Compressed Sparse Column format>

A = sp.csc_matrix((entries,(row,col)),shape= (M,N)) "

Matrices of different data types can be defined using the “dtype” option

: A3 = sp.csc_matrix((entries, (row,col)),dtype = int,shape=(4,4))
In [27]: A3

<4x4 sparse matrix of type '<class ‘numpy.intc'>'
with 4 stored elements in Compressed Sparse Column format>

In [28]: A3.A

array([[2, @],
[2, e],
[e, e],
[@, 0]], dtype=int32)

Sparse matrices can be converted to dense matrices

i In [18]: print(A
in two ways: n [18]: print(A)

(0, 8) 2.0
(1, 8) 2.0
(@, 1) 2.0
1. Using the .todense() or .A methods (1, 1) 2.0

In [19]: print(A.todense())

[[2. 2.]
[2. 2.1]

In [20]: print(A.A)
2. Automatically as the result of a matrix operation [E ; %]
that produces a dense matrix S

In [3@]: b = np.array([[1],[211)

In [31]: A@Db

array([[6.1, \
L NB: when this happens be careful! Some of your

Sparse routines will not work on regular matrices.

You can convert a dense matrix to a sparse matrix using
The sp.[...]_matrix() function

In [65]: AD = np.diag([1,1,1,2,2,2])

In [66]: print(AD)
[[1000 0 0]
[061000 0]
[060100 0]
[000 20 0]
[06000 2 0]
[060000 2]]

In [67]: AS = sp.csc_matrix(AD)

In [68]: print(AS)
(0, 0) 1
(1, 1)
(2, 2)
(3, 3)
Yy
(5, 5)

Sparse matrices can be visualised using
the “spy()” function in conjunction with
matplotlib.

In [37]: A3.A

array([[2,

2,
2,
9,
9,

0]], dtype=int32)

In [38]: plt.spy(A3)
<matplotlib.lines.Line2D at ©x1c75337da0ve>

Sparsify-ing matrices

Often in a real situation a matrix will have elements
which are close to zero without being sparse. A useful
Technique is to “sparsify” the matrix by setting all

the small elements to exactly zero.

Python offers a simple way to do this:

AD[abs(AD)<@.1] = @.

A = sp.csc_matrix(AD)

Building more complicated sparse matrices in python — the diags function
When building a sparse matrix yourself you usually have to specify the
elements either along the main diagonal, or along the upper or lower diagonals.

This can be done using the diags function. There are two approaches:

1. Direct definition:

A = sp.diags([[elements on 1%t diagonal],[elements on 2"d diagonal]],...],[index of first diagonal, index of 2"d diagonal,...])

In [113]: G = sp.diags([[1,2,1],[3,4]],[0,1])

In [114]:

array([[1.
[@.
[@.

2. Broadcasting (assign all elements to a single number)

A = sp.diags([element 1,element 2, ...],[0,1,2,...],shape=(N,N))

In [117]: sp.diags([1,2],[9,1],shape=(3,3))

In [118]:

array([[1.
[©.
[0.

Operations with sparse matrices
All the “usual” matrix operations work with sparse matrices.

E.g. Matrix multiplication:

: AD = np.diag([1,1,1,2,2,2]) In [89]: cs2 = AS.dot(bs)

: BD = np.array([[1],[e],[e],[-1]1,[2],[e]])

In [90]: print(cs2)

(C) 4
(3, 0) -2
(0, @) 1

: AS = sp.csc_matrix(AD)

: bs = sp.csc_matrix(BD)
: cs = AS @ bs

[88]: print(cs)
(4, o) 4
(3, 0) -2
(e, o) 1

Note that multiplication will convert a sparse matrix to a normal one if it becomes non-sparse.

Also Note: The norm function in scipy only computes the L; and L, norm!

Decomposition of Sparse matrices
The LU decomposition can be done using the sparse.splu() function
In the scipy.sparse.linalg module, and returns an L and U packaged together:

In [109]: LU = sla.splu(AS)

In [110]: LU.L.A

array([[1. , 0. , . ,
[-0.15129968, 1. , 0. ,
[-0.18137319, ©0.60793442, 1. ,
[-©.33503656, -0.43754454, .52032285,

In [111]: LU.U.A

array([[1.54042516, -0.63969771, -0.27747472, ©.54167411],
. , 1.23102453, -0.56414286, -0.50376781],

, 0. , ©.83797449, 1.17092558],

, 0. , 0. , -0.5762109 1])

Note: There is currently no
official sparse QR decomposition for python!

Arnoldi iteration

Arnoldi iteration is a powerful and stable method for computing the eigenvalues of large matrices.
It is especially suitable for sparse systems.

Av =)\v

Recall in Power Iteration, successive applications of A bring any vector toward the eigenvector.

v

\ 4
v

The idea of Arnoldi iteration is to keep the information from each iteration,
and use it to construct an orthogonal basis that can be used to compute the eigenvalues.

v
\ 4

For each iteration we keep the resulting vector into a matrix, known as the Krylov matrix

K,=|b Ab A%p An-1p

From each column we construct an orthonormal set of vectors q;
using Gramm-Schmidt orthogonalization. This is known as the Krylov subspace.

v

We then re-write the matrix A in terms of these new basis vectors q;

H=0A0Q

Because the (s are orthogonal, the matrix H is almost upper triangular,
and will also have the same eigenvalues as A.

We can then use QR-decomposition to extremely efficiently compute
the eigenvalues.

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23

