Numerical Solution of Differential Equations

Statement of the problem
Euler’s method and why it’s bad
The mid-point method

The Runge-Kutta method

Other methods

Higher-order DEs

Two-point Boundary Value Problems

We would like to solve (for the moment) the
first-order differential equation

Vo flry) g () = f(29)

with an initial condition

y(To) = yo -

In principle, if we know the derivatives at each point, we should be able to
construct the entire function.

v

Euler’s method
Start with Taylor series

Re-arrange:

Euler’s method:
1. Startatx = xg, y(xg) = yo
2. Compute
y(x 4+ h) =y(x) + hf(z,y)

3. Repeat2

v

Error in Euler’s method 4

Error in each step:

Number of steps in an interval of length L:

S ———

Cumulative error at the end:

1. Very small step-sizes required

‘ 2. Really not good if you want to e.g.

integrate the function at the end

v

The mid-point method
(a.k.a 2"d-order Runge-Kutta method)

The idea: instead of taking the slope
at the beginning of the interval, take it at the half-step
along to the next point.

1. Estimate the mid-point using an Euler Step

2. Compute the slope at this estimated mid-point

3. Do a time step using this slope.

v

Mid-point method:

1. Startatx = xy, y(x9) = yo

2. Compute
kl — f(xna yn)
1 1
ko = flxn+ §h,yn+ §k1h)
Yn+1 = UYn + hk2

3. Repeat2

Error in the mid-point method

Error in each step:

Number of steps in an interval of length L:

Cumulative error at the end:

v

The 4th-order Runge-Kutta method
This is the “workhorse” of most numerical methods.

The idea: get a better estimate of the “total” slope by using a
Weighted Average of the slopes across the interval:

Specifically:
k, is the slope at the beginning of the interval
k, is the slope at the midpoint, using y and k4
k is the slope at the midpoint, usingy and k,
k, is the slope at the endpoint, using y and k;

We then “step” using an average of these slopes:

v

4th-order Runge-Kutta method

1. Startatx = xy, y(xg) = yo

2. Compute
kl — (ZETMyn)
1 h
1 h
k4 — f(xn_l_hyn_'_kS)
h
Unt1 = Ynt g (k1 + 2k 4 2k3 + k4)

3. Repeat 2

Error in each step:

Number of steps in an interval of length L:

Cumulative error at the end:

Other important methods:

e Adaptive step Runge-Kutta method
Uses two interleaved methods of different order (say 5t and 4t order),
and uses the difference between these two to estimate the error. If the error
exceeds a given threshold, the step size is changed.

* Predictor-Corrector methods

These extrapolate the existing curve to a new point (predict),
and then use this new point to correct the estimation.

. Bulirsch-Stoer method

Uses rational function interpolation to extrapolate to the next point, then

match this to the power series of the function. Complicated but very useful for
Solving “stiff” ODEs.

Solving higher-order equations
Higher order ODEs can be converted to systems of first order ODEs.

E.g.
Py d*y _dy
— 2— +H5y=0
dx3 dx? + dx oY

This new system can then be solved using (say)
Runge-Kutta.

Two-point boundary value problems

For higher-order DEs, we are often give a
two-point boundary value problem instead of
an initial condition.

E.g. the 2nd-order differential equation

y'(z) = f(z,y)

With boundary conditions

y(xo) =y0o , ylx1)=wn

Note that the 1st-order derivatives are not specified.

v

The shooting method 4
The idea: Start at one side, pick a 1%t derivative,
and “shoot” towards the other.

By changing the value of the first derivative,
you can minimise the distance between the
“shot” and the “target”.

Shooting method pseudo-code

Function yshot(dydx0,f,x0,x1,y0)
X, y = odesolve(f,x0,x1,y0,dydx0) # solve the ode y’ = f(x,y), starting at x0, ending at x1
and with initial conditions y0, dydx0
yshot = y(end) # pick the final value

dydx = minimise(abs(yshot-y1)) # find the value of dydx0 that minimises
the distance to y1

X,y = odesolve(f,x0,x1,y0,dydx) # solve the ode for the particular value of dydx

v

Other main methods for solving DEs:

The relaxation method

Start with an estimated solution and change each point to minimize the average error

The Finite element method

The “gold standard” for solving all differential equations (but could be its own entire subject).
Convert the DE into integral form, approximate the solution using polynomial interpolation. The Differential
Equation is then reduced to solving a big sparse matrix.

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13

