
Numerical Solution of Differential Equations

Statement of the problem

Euler’s method and why it’s bad

The mid-point method

The Runge-Kutta method

Other methods

Higher-order DEs

Two-point Boundary Value Problems

We would like to solve (for the moment) the
first-order differential equation

with an initial condition

In principle, if we know the derivatives at each point, we should be able to
construct the entire function.

Euler’s method
Start with Taylor series

Re-arrange:

Euler’s method:

1. Start at 𝑥𝑥 = 𝑥𝑥0, 𝑦𝑦 𝑥𝑥0 = 𝑦𝑦0

2. Compute

3. Repeat 2

Error in Euler’s method

Error in each step:

Number of steps in an interval of length 𝐿𝐿:

Cumulative error at the end:

1. Very small step-sizes required

2. Really not good if you want to e.g.
integrate the function at the end

The mid-point method
(a.k.a 2nd-order Runge-Kutta method)

The idea: instead of taking the slope
at the beginning of the interval, take it at the half-step
along to the next point.

Mid-point method:

1. Start at 𝑥𝑥 = 𝑥𝑥0, 𝑦𝑦 𝑥𝑥0 = 𝑦𝑦0

2. Compute

3. Repeat 2

1. Estimate the mid-point using an Euler Step

2. Compute the slope at this estimated mid-point

3. Do a time step using this slope.

Error in the mid-point method

Error in each step:

Number of steps in an interval of length 𝐿𝐿:

Cumulative error at the end:

The 4th-order Runge-Kutta method
This is the “workhorse” of most numerical methods.

The idea: get a better estimate of the “total” slope by using a
Weighted Average of the slopes across the interval:

Specifically:

We then “step” using an average of these slopes:

𝑘𝑘1 is the slope at the beginning of the interval
𝑘𝑘2 is the slope at the midpoint, using y and 𝑘𝑘1
𝑘𝑘3 is the slope at the midpoint, using y and 𝑘𝑘2
𝑘𝑘4 is the slope at the endpoint, using y and 𝑘𝑘3

4th-order Runge-Kutta method

1. Start at 𝑥𝑥 = 𝑥𝑥0, 𝑦𝑦 𝑥𝑥0 = 𝑦𝑦0

2. Compute

3. Repeat 2

Error in each step:

Number of steps in an interval of length 𝐿𝐿:

Cumulative error at the end:

Other important methods:

• Adaptive step Runge-Kutta method
 Uses two interleaved methods of different order (say 5th and 4th order),

 and uses the difference between these two to estimate the error. If the error
 exceeds a given threshold, the step size is changed.

• Predictor-Corrector methods
These extrapolate the existing curve to a new point (predict),
and then use this new point to correct the estimation.

• Bulirsch-Stoer method
Uses rational function interpolation to extrapolate to the next point, then
match this to the power series of the function. Complicated but very useful for
Solving “stiff” ODEs.

Solving higher-order equations
Higher order ODEs can be converted to systems of first order ODEs.

E.g.

This new system can then be solved using (say)
Runge-Kutta.

Two-point boundary value problems
For higher-order DEs, we are often give a
two-point boundary value problem instead of
an initial condition.

E.g. the 2nd-order differential equation

With boundary conditions

Note that the 1st-order derivatives are not specified.

The shooting method
The idea: Start at one side, pick a 1st derivative,
and “shoot” towards the other.

By changing the value of the first derivative,
you can minimise the distance between the
“shot” and the “target”.

Shooting method pseudo-code

Function yshot(dydx0,f,x0,x1,y0)
 x, y = odesolve(f,x0,x1,y0,dydx0) # solve the ode y’ = f(x,y), starting at x0, ending at x1
 # and with initial conditions y0, dydx0
 yshot = y(end) # pick the final value

dydx = minimise(abs(yshot-y1)) # find the value of dydx0 that minimises
 # the distance to y1

x,y = odesolve(f,x0,x1,y0,dydx) # solve the ode for the particular value of dydx

Other main methods for solving DEs:

The relaxation method

Start with an estimated solution and change each point to minimize the average error

The Finite element method

The “gold standard” for solving all differential equations (but could be its own entire subject).
Convert the DE into integral form, approximate the solution using polynomial interpolation. The Differential
Equation is then reduced to solving a big sparse matrix.

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13

