
Finite Difference Methods

Finite differences in 1D

Sparse matrix formulation

Boundary conditions

Solving two-point boundary value problems

Setting up higher dimensional problems

Finite differences in higher dimensions

Boundary conditions

Other approaches

Imagine we have a function 𝑢𝑢 𝑥𝑥 with known values at a fixed
number of equally-spaced nodes, with spacing ℎ:

We saw in Week 2 that an approximation for the first
derivative of 𝑢𝑢 at the 𝑗𝑗𝑡𝑡𝑡 node is

If we represent 𝑢𝑢 as a vector, then the numerical derivative can be represented as a matrix:

=

This is a tridiagonal, sparse matrix.

The first-order central difference derivative is

Which leads to the matrix equation

=
−1 0 1

1
2ℎ

−1 0 1

−1 0 1

−1 0 1

−2 2

−2 2
−1 0 1

⋱

⋱

𝑢𝑢𝑗𝑗−1

𝑢𝑢𝑗𝑗
𝑢𝑢𝑗𝑗+1

𝑢𝑢0

𝑢𝑢𝑁𝑁−1

⋮

⋮

⋮

⋮

⋮

𝑢𝑢𝑗𝑗′

𝑢𝑢𝑢𝑗𝑗−1

𝑢𝑢𝑗𝑗+1′

𝑢𝑢𝑗𝑗′ =
1
2ℎ −𝑢𝑢𝑗𝑗−1 + 𝑢𝑢𝑗𝑗+1

The second-order derivative (using central differences) is

Which leads to the matrix equation

=
1 −2 1

1
ℎ2

1 −2 1

1 −2 1

1 −2 1

1 −2 1

⋱

⋱

𝑢𝑢𝑗𝑗−1

𝑢𝑢𝑗𝑗
𝑢𝑢𝑗𝑗+1

𝑢𝑢0

𝑢𝑢𝑁𝑁−1

⋮

⋮

𝑢𝑢𝑗𝑗′′

𝑢𝑢𝑢𝑢𝑗𝑗−1

𝑢𝑢𝑗𝑗+1′′

⋮

⋮

⋮

1 −2 1

1 −2 1

𝑢𝑢𝑗𝑗′′ =
1
ℎ2

𝑢𝑢𝑗𝑗−1 − 2 𝑢𝑢𝑗𝑗 + 𝑢𝑢𝑗𝑗+1

We say that 𝐷𝐷2 is a finite difference
representation of the differential
operator

Finite differences for boundary value problems
We can solve differential equations numerically by substituting the matrix
representations of the operator and then solving as if it were a matrix equation.

E.g. to solve

We would set up the matrix equation

where

𝐷𝐷2u = f

𝐷𝐷2 =
1 −2 1

1
ℎ2

1 −2 1

1 −2 1

1 −2 1

1 −2 1

⋱

⋱

1 −2 1

1 −2 1

𝑢𝑢𝑗𝑗−1

𝑢𝑢𝑗𝑗
𝑢𝑢𝑗𝑗+1

𝑢𝑢0

𝑢𝑢𝑁𝑁−1

⋮

⋮

u =

𝑓𝑓(𝑥𝑥𝑗𝑗−1)

𝑓𝑓(𝑥𝑥𝑗𝑗)

𝑓𝑓(𝑥𝑥𝑗𝑗+1)

𝑓𝑓(𝑥𝑥0)

𝑓𝑓(𝑥𝑥𝑁𝑁−1)

⋮

⋮

f =

To solve this system (i.e. to find
the unknowns 𝑢𝑢𝑗𝑗) we invert this equation:

However we still have to apply
Boundary conditions

Boundary Conditions usually take the form

𝑢𝑢 𝑥𝑥0 = 𝐴𝐴, 𝑢𝑢 𝑥𝑥𝑁𝑁−1 = 𝐵𝐵 (two-point boundary value problems)

To enforce a two-point BVP we modify the first and last lines of the matrix equation:

1 −2 1
1
ℎ2

1 −2 1

1 −2 1

1 −2 1

⋱

⋱

𝑢𝑢𝑗𝑗−1

𝑢𝑢𝑗𝑗
𝑢𝑢𝑗𝑗+1

𝑢𝑢0

𝑢𝑢𝑁𝑁−1

⋮

⋮

𝑓𝑓(𝑥𝑥𝑗𝑗−1)

𝑓𝑓(𝑥𝑥𝑗𝑗)

𝑓𝑓(𝑥𝑥𝑗𝑗+1)

1 −2 1 𝑓𝑓(𝑥𝑥0)

⋮

⋮

=

𝑓𝑓(𝑥𝑥𝑁𝑁−1)1 −2 1

1 −2 1

𝐴𝐴1 0 0

To create a boundary condition with a derivative, e.g.

𝑢𝑢′ 𝑥𝑥0 = 𝐶𝐶

You modify the first (or last) line to approximate the derivative
using forward (or backward) differences:

1 −2 1
1
ℎ2

1 −2 1

1 −2 1

1 −2 1

⋱

⋱

𝑢𝑢𝑗𝑗−1

𝑢𝑢𝑗𝑗
𝑢𝑢𝑗𝑗+1

𝑢𝑢0

𝑢𝑢𝑁𝑁−1

⋮

⋮

𝑓𝑓(𝑥𝑥𝑗𝑗−1)

𝑓𝑓(𝑥𝑥𝑗𝑗)

𝑓𝑓(𝑥𝑥𝑗𝑗+1)

⋮

⋮

=

1 −2 1

Finite differences can be used to solve almost anything in 1D.

Advantages:

• Simple to implement
• Fast

Disadvantages:

• Requires knowledge of sparse systems
• A bit fiddly with boundary conditions
• Not so good for “stiff” problems (i.e. ones for which the function varies rapidly).

Finite Differences in higher dimensions
A big strength of the FD method is its ability to solve Partial
Differential Equations (PDEs) in 2D and higher dimension.

To formulate a FD method in 2D we need to convert a 2D
grid into a vector, and back again.

A 2D numpy array can be created using a combination of
linspace and meshgrid (See Lab 4):

X Y

We can then unfold the grid (and any functions defined on a grid)
using the numpy reshape function:

X Y

Xv Yv

Create a 100 x 1 column vector

(Whenever you do this, it helps (a lot) to draw
this out on paper)

If we have a function defined on a grid this can also be disassembled:

F

Fv

We can then re-assemble the functions into the original grid using reshape:

FnewFv

The partial derivative with respect to x
Recall that 𝐷𝐷2 gives the 2nd partial derivative with respect to x of a
single vector 𝑢𝑢(𝑥𝑥𝑗𝑗)
To get the partial derivative, we build a block matrix consisting
of the 𝐷𝐷2 matrices:

1 −2 1
𝐷𝐷2 =

1
ℎ2

1 −2 1

1 −2 1

1 −2 1

1 −2 1

⋱

⋱

1 −2 1

1 −2 1

…

…

…

…

𝐷𝐷2𝑥𝑥

Fv

The partial derivative with respect to y
To get the partial derivative with respect to y, we need to
interleave the D2 matrix so that it hits the right y values:

1 −2 1
𝐷𝐷2 =

1
ℎ2

1 −2 1

1 −2 1

1 −2 1

1 −2 1

⋱

⋱

1 −2 1

1 −2 1

…

…

…

…

𝐷𝐷2𝑦𝑦

Fv

Forming the Laplacian (and more complicated operators)
General PDEs like the Laplacian can be constructed just by adding matrices:

More complicated derivatives can also be constructed. E.g. We can then create and solve
PDEs by forming the matrix
equation

L u = f

L

…

…

…

…

Boundary conditions can be applied by modifying the resulting matrix
To create equations that are like, for example:

 u(x,0) = 0:

=

L u f

Boundary conditions can be applied by modifying the resulting matrix
To create equations that are like, for example:

 u(0,y) = 0:

…

…

…

…

L u f

=

Alternative numerical methods for PDEs:

 Finite Element Method
Expand in a mesh of simplexes (i.e. triangles), on which the
solution is interpolated using polynomials

The Boundary Element Method
Uses Green’s functions on the boundary to construct the solution
in an interior domain

Semi-analytical or combined methods
e.g. Crank-Nicholson, Modal methods

The End

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20

