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Imagine we have a function 𝑢𝑢 𝑥𝑥  with known values at a fixed
number of equally-spaced nodes, with spacing ℎ:

We saw in Week 2 that an approximation for the first 
derivative of 𝑢𝑢 at the 𝑗𝑗𝑡𝑡𝑡 node is



If we represent 𝑢𝑢 as a vector, then the numerical derivative can be represented as a matrix:

=

This is a tridiagonal, sparse matrix.



The first-order central difference derivative is

Which leads to the matrix equation

=
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The second-order derivative (using central differences) is

Which leads to the matrix equation
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We say that 𝐷𝐷2 is a finite difference 
representation of the differential 
operator



Finite differences for boundary value problems
We can solve differential equations numerically by substituting the matrix 
representations of the operator and then solving as if it were a matrix equation.

E.g. to solve

We would set up the matrix equation

where

𝐷𝐷2u = f
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To solve this system (i.e. to find 
the unknowns 𝑢𝑢𝑗𝑗) we invert this equation:

However we still have to apply
Boundary conditions



Boundary Conditions usually take the form

𝑢𝑢 𝑥𝑥0 = 𝐴𝐴,     𝑢𝑢 𝑥𝑥𝑁𝑁−1 = 𝐵𝐵  (two-point boundary value problems)

To enforce a two-point BVP we modify the first and last lines of the matrix equation:
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To create a boundary condition with a derivative, e.g.

𝑢𝑢′ 𝑥𝑥0 = 𝐶𝐶

You modify the first (or last) line to approximate the derivative
using forward (or backward) differences: 
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Finite differences can be used to solve almost anything in 1D.

Advantages: 

• Simple to implement
• Fast 

Disadvantages:

• Requires knowledge of sparse systems
• A bit fiddly with boundary conditions
• Not so good for “stiff” problems (i.e. ones for which the function varies rapidly). 



Finite Differences in higher dimensions
A big strength of the FD method is its ability to solve Partial 
Differential Equations (PDEs) in 2D and higher dimension.

To formulate a FD method in 2D we need to convert a 2D 
grid into a vector, and back again.

A 2D numpy array can be created using a combination of 
linspace and meshgrid (See Lab 4):

X Y



We can then unfold the grid (and any functions defined on a grid)
using the numpy reshape function:

X Y

Xv Yv

Create a 100 x 1 column vector

(Whenever you do this, it helps (a lot) to draw 
this out on paper)



If we have a function defined on a grid this can also be disassembled:

F

Fv



We can then re-assemble the functions into the original grid using reshape:

FnewFv



The partial derivative with respect to x
Recall that 𝐷𝐷2 gives the 2nd partial derivative with respect to x of a 
single vector 𝑢𝑢(𝑥𝑥𝑗𝑗)
To get the partial derivative, we build a block matrix consisting 
of the 𝐷𝐷2 matrices:
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The partial derivative with respect to y
To get the partial derivative with respect to y, we need to 
interleave the D2 matrix so that it hits the right y values:
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Forming the Laplacian (and more complicated operators)
General PDEs like the Laplacian can be constructed just by adding matrices:

More complicated derivatives can also be constructed. E.g. We can then create and solve 
PDEs by forming the matrix 
equation

L u = f

L



…

…

…

…

Boundary conditions can be applied by modifying the resulting matrix
To create equations that are like, for example:

 u(x,0) = 0:

=

L u f



Boundary conditions can be applied by modifying the resulting matrix
To create equations that are like, for example:

 u(0,y) = 0:

…

…

…

…

L u f

=



Alternative numerical methods for PDEs:

 Finite Element Method
Expand in a mesh of simplexes (i.e. triangles), on which the 
solution is interpolated using polynomials

The Boundary Element Method
Uses Green’s functions on the boundary to construct the solution 
in an interior domain

Semi-analytical or combined methods
e.g. Crank-Nicholson, Modal methods



The End
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