Finite Difference Methods

Finite differences in 1D

Sparse matrix formulation

Boundary conditions

Solving two-point boundary value problems
Setting up higher dimensional problems
Finite differences in higher dimensions
Boundary conditions

Other approaches

Imagine we have a function u(x) with known values at a fixed
number of equally-spaced nodes, with spacing h:

/

v

We saw in Week 2 that an approximation for the first
derivative of u at the j'* node is

If we represent u as a vector, then the numerical derivative can be represented as a matrix:

e N /‘ \ e N

This is a tridiagonal, sparse matrix.

The first-order central difference derivative is

, 1
Uj = ﬁ —Uj—1 + Ujt1q)

Which leads to the matrix equation

-~ ~ /—2 2
-1 0 1
u'j_l
y - 1 -1 0 1
"1 2hn -1 0 1
Wy -1 0 1
-1 0 1

L) 4 -2 2)

The second-order derivative (using central differences) is
= i(—2u; +)
W =z\W-17 2 T Ujgg

Which leads to the matrix equation

We say that D, is a finite difference

- ~ 1 =2 1 N[U A representation of the differential
{1 -2 1 operator
d2
,u'llj_1) de
) 1 1 -2 1 Uj—q
u]' = —2
h 1 -2 1 U;
Ujyq 1 -2 1 uj+1
1 -2 1
_ Yy, _ 1 —2 1 _/ \uN_lj

Finite differences for boundary value problems

We can solve differential equations numerically by substituting the matrix
representations of the operator and then solving as if it were a matrix equation.

E.g. to solve

d?u

da?

= f(x)

We would set up the matrix equation

where

~

1 -2 1
1 -2 1

Dzu:f

1 -2 1
1 -2 1
1 -2 1

1 -2 1

1 -2 1)

To solve this system (i.e. to find
the unknowns u;) we invert this equation:

[Fxo)

fxj-1)
f(x;)
f(xje1)

However we still have to apply

Boundary conditions

)

Boundary Conditions usually take the form

u(xy) =4, ulxy_1) =8B (two-point boundary value problems)

To enforce a two-point BVP we modify the first and last lines of the matrix equation:

R ~ ™
1 @ D AR f &o)
1 -2 1
1 1 -2 1 Uj_q fxj—1)
h? 1 -2 1 Y f(x;)
1 -2 1 u;+1 f(xj41)
1 -2 1
1 -2 1 Uy-1
_ 2NN J \f(xN—l)/

To create a boundary condition with a derivative, e.g.
u'(xg) =C

You modify the first (or last) line to approximate the derivative
using forward (or backward) differences:

e ~ e N
Ug
1 -2 1

1 1 -2 1 Uj_q
h2 1 -2 1 uj B

1 -2 1 uj+1

1 -2 1
- ULy

fxj—1)
f(x;)
f(xjs1)

Finite differences can be used to solve almost anything in 1D.

Advantages:

e Simple to implement

* Fast

Disadvantages:

* Requires knowledge of sparse systems

* A bit fiddly with boundary conditions
* Not so good for “stiff” problems (i.e. ones for which the function varies rapidly).

Finite Differences in higher dimensions
A big strength of the FD method is its ability to solve Partial
Differential Equations (PDEs) in 2D and higher dimension.

To formulate a FD method in 2D we need to convert a 2D
grid into a vector, and back again.

A 2D numpy array can be created using a combination of
linspace and meshgrid (See Lab 4):

np.linspace(-5,5,10)
np.linspace(-5,5,10)

X,Y = np.meshgrid(x,y)

We can then unfold the grid (and any functions defined on a grid)
using the numpy reshape function:

Xv = np.reshape(X, (10*10,1))
Yv = np.reshape(Y, (106*10,1))

Create a 100 x 1 column vector

(Whenever you do this, it helps (a lot) to draw
this out on paper)

Xv

Yv

If we have a function defined on a grid this can also be disassembled:

def f(x,y):
f = np.sin(x)*np.cos(y)

return f

Fv = np.reshape(F, (N*N,1))

100

0.75

050

0.25

0.00

-0.25

-0.50

-0.75

-1.00

G

20

100

We can then re-assemble the functions into the original grid using reshape:

Fnew = np.reshape(Fv, (N,N))

Ry Fnew

100

075

050

025

0.00

-0.25

-0.50

-0.75

-1.00

The partial derivative with respect to x

Recall that D, gives the 2"? partial derivative with respect to x of a

single vector u(x;)

To get the partial derivative, we build a block matrix consisting

of the D, matrices:

1

-2 1
-2 1
1

-2 1
1 -2 1

1
1

-2 1
=

The partial derivative with respect toy

To get the partial derivative with respect to y, we need to
interleave the D2 matrix so that it hits the right y values:

i Fv

1

-2 1
-2 1
1

-2 1

1 -2 1

1
1

-2 1
-2 1)

Forming the Laplacian (and more complicated operators)
General PDEs like the Laplacian can be constructed just by adding matrices:

0> 0?
+ :D2:1:+D2y

2 __
ve= Ox? Oy?

More complicated derivatives can also be constructed. E.g.
o o4

923 |y

0 02

2 —_— —
Y o i 0x0y

We can then create and solve
PDEs by forming the matrix
equation

Il
—n

Lu

Boundary conditions can be applied by modifying the resulting matrix
To create equations that are like, for example:

u(x,0) = 0:

L u f
e N []
o _/

Boundary conditions can be applied by modifying the resulting matrix
To create equations that are like, for example:

u(0,y) = 0:

L u f
- N[
o

Alternative numerical methods for PDEs:

Finite Element Method
Expand in a mesh of simplexes (i.e. triangles), on which the
solution is interpolated using polynomials

The Boundary Element Method
Uses Green’s functions on the boundary to construct the solution
in an interior domain

Semi-analytical or combined methods
e.g. Crank-Nicholson, Modal methods

The End

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20

