Finite Difference Methods

Finite differences in 1D

Sparse matrix formulation

Boundary conditions

Solving two-point boundary value problems

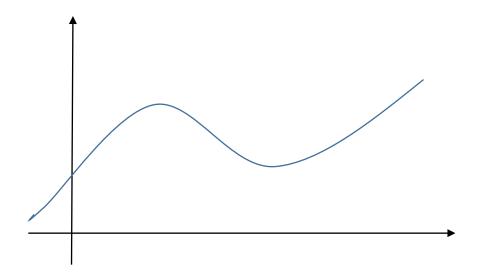
Setting up higher dimensional problems

Finite differences in higher dimensions

Boundary conditions

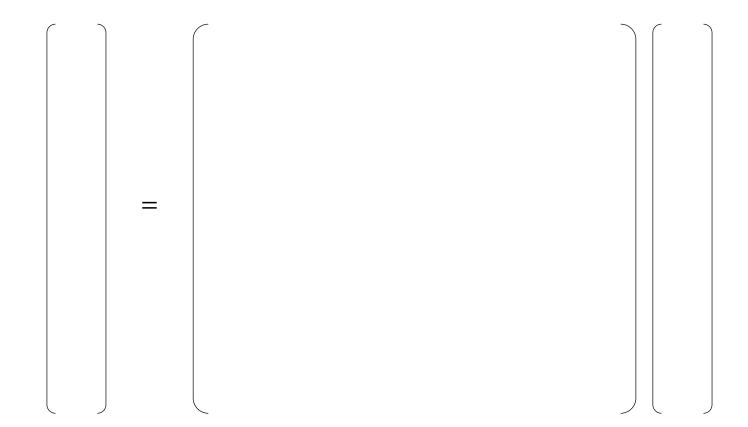
Other approaches

Imagine we have a function u(x) with known values at a fixed number of equally-spaced nodes, with spacing h:



We saw in Week 2 that an approximation for the first derivative of u at the j^{th} node is

If we represent u as a *vector*, then the numerical derivative can be represented as a matrix:

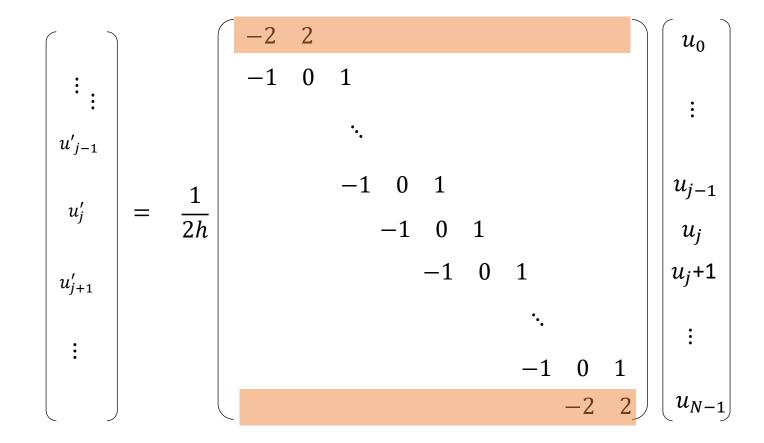


This is a *tridiagonal*, sparse matrix.

The first-order central difference derivative is

$$u'_{j} = \frac{1}{2h} \left(-u_{j-1} + u_{j+1} \right)$$

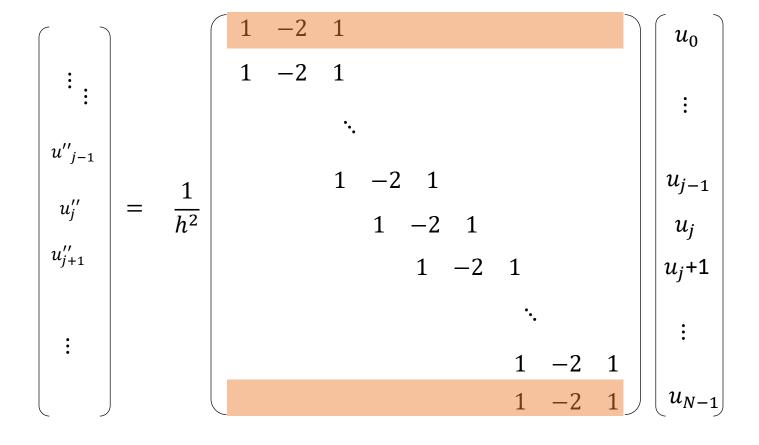
Which leads to the matrix equation



The second-order derivative (using central differences) is

$$u_j^{\prime\prime} = \frac{1}{h^2} (u_{j-1} - 2 u_j + u_{j+1})$$

Which leads to the matrix equation



We say that D_2 is a <u>finite difference</u> representation of the differential operator

$$\frac{d^2}{dx^2}$$

Finite differences for boundary value problems

We can solve differential equations numerically by substituting the matrix representations of the operator and then solving as if it were a matrix equation.

E.g. to solve

$$-\frac{d^2u}{dx^2} = f(x)$$

To solve this system (i.e. to find the unknowns u_i) we *invert* this equation:

We would set up the matrix equation

$$D_2$$
u = f

where

<u>However</u> we still have to apply <u>Boundary conditions</u>

Boundary Conditions usually take the form

$$u(x_0) = A$$
, $u(x_{N-1}) = B$ (two-point boundary value problems)

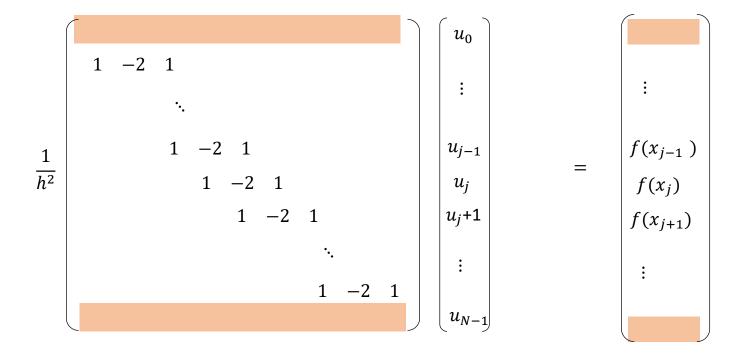
To enforce a two-point BVP we modify the first and last lines of the matrix equation:



To create a boundary condition with a derivative, e.g.

$$u'(x_0) = C$$

You modify the first (or last) line to approximate the derivative using forward (or backward) differences:



Finite differences can be used to solve almost anything in 1D.

Advantages:

- Simple to implement
- Fast

Disadvantages:

- Requires knowledge of sparse systems
- A bit fiddly with boundary conditions
- Not so good for "stiff" problems (i.e. ones for which the function varies rapidly).

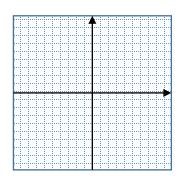
Finite Differences in higher dimensions

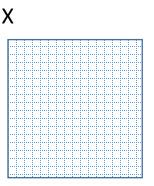
A big strength of the FD method is its ability to solve Partial Differential Equations (PDEs) in 2D and higher dimension.

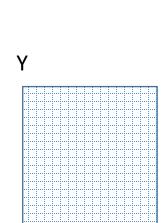
To formulate a FD method in 2D we need to convert a 2D grid into a vector, and back again.

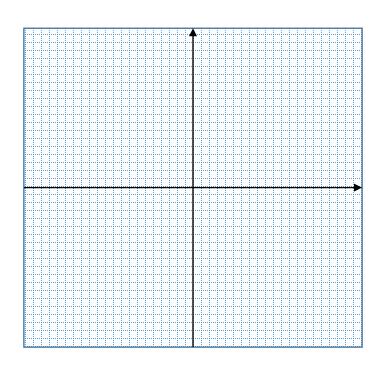
A 2D numpy array can be created using a combination of linspace and meshgrid (See Lab 4):

```
22  x = np.linspace(-5,5,10)
23  y = np.linspace(-5,5,10)
24
25  X,Y = np.meshgrid(x,y)
26
```



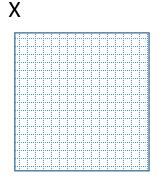




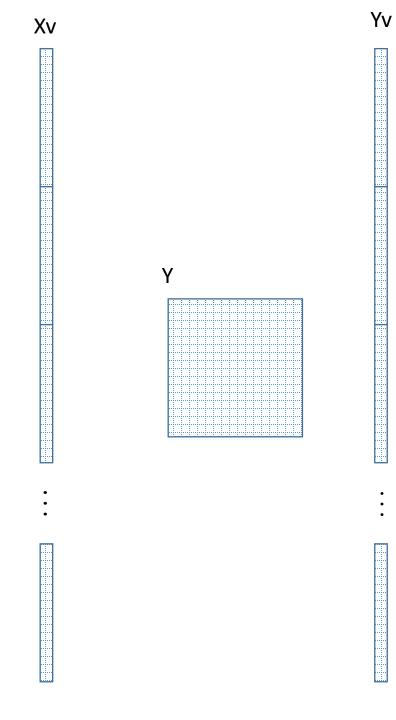


We can then unfold the grid (and any functions defined on a grid) using the numpy *reshape* function:

Create a 100 x 1 column vector

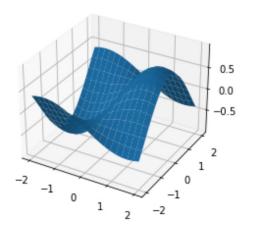


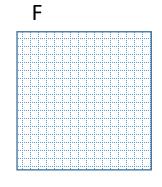
(Whenever you do this, it helps (a lot) to draw this out on paper)

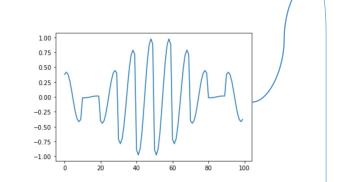


If we have a function defined on a grid this can also be disassembled:

```
def f(x,y):
17
        f = np.sin(x)*np.cos(y)
18
19
        return f
26
    F = f(X,Y)
27
28
41
     Fv = np.reshape(F,(N*N,1))
```



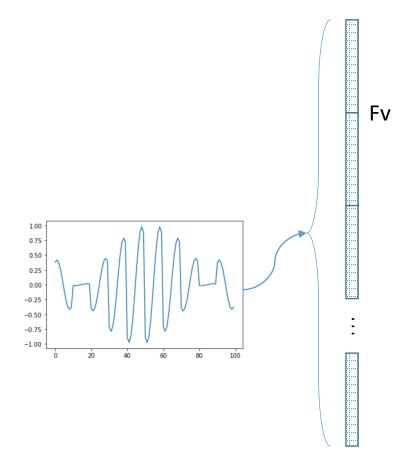




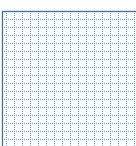
Fv

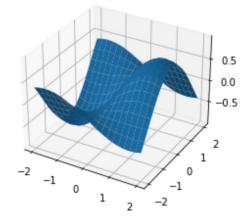
We can then re-assemble the functions into the original grid using reshape:

```
49
50 Fnew = np.reshape(Fv,(N,N))
51
```



Fnew

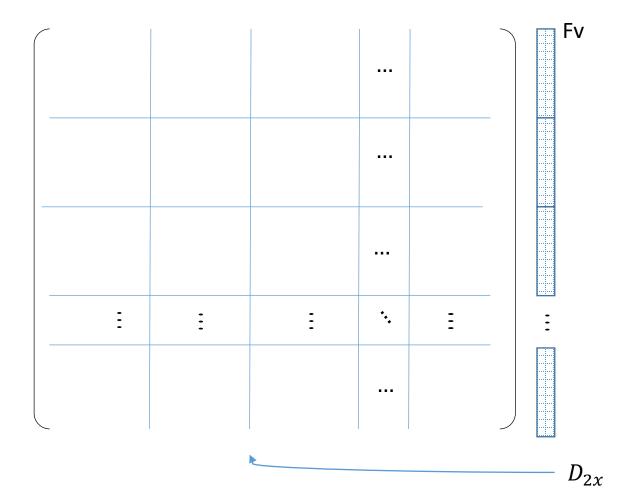




The partial derivative with respect to x

Recall that D_2 gives the 2nd partial derivative with respect to x of a single vector $u(x_i)$

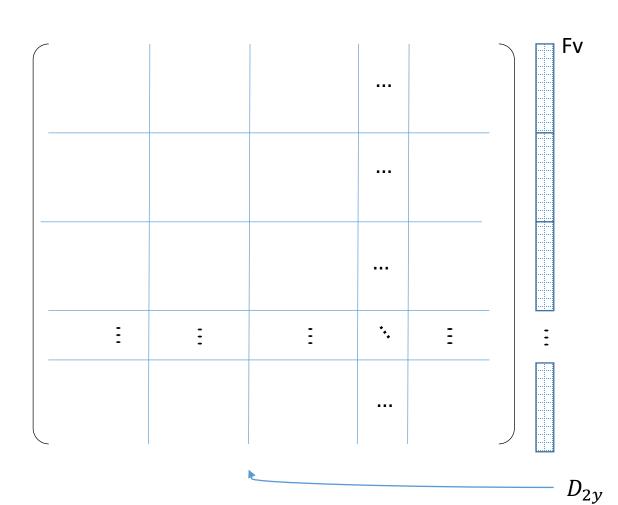
To get the partial derivative, we build a block matrix consisting of the ${\cal D}_2$ matrices:



-2

The partial derivative with respect to y

To get the partial derivative with respect to y, we need to interleave the D2 matrix so that it hits the right y values:



Forming the Laplacian (and more complicated operators)

General PDEs like the Laplacian can be constructed just by adding matrices:

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = D_{2x} + D_{2y}$$

More complicated derivatives can also be constructed. E.g.

$$\frac{\partial^3}{\partial x^3} + \frac{\partial^4}{\partial y^4} =$$

$$2x\frac{\partial}{\partial x} + \frac{\partial^2}{\partial x \partial y} =$$

$$L$$

We can then create and solve PDEs by forming the matrix equation

$$Lu = f$$

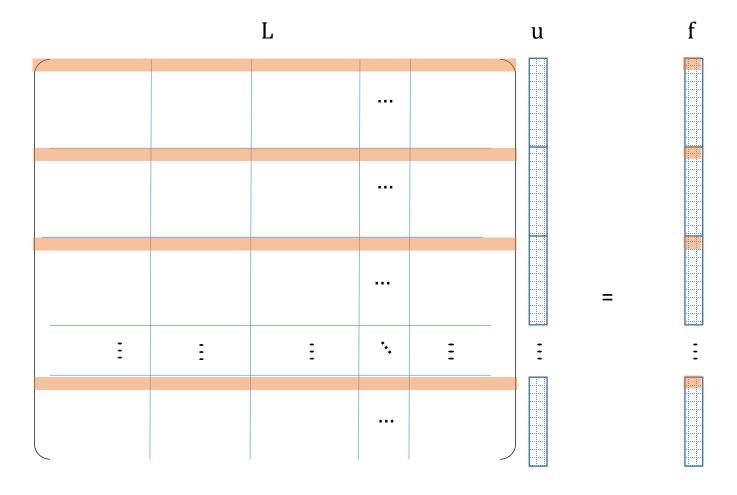
Boundary conditions can be applied by modifying the resulting matrix To create equations that are like, for example:

u(x,0) = 0:

		L			u	f
			•••			
			•••			=
Ē	<u>:</u>	<u> </u>	*.	Ξ.	:	:

Boundary conditions can be applied by modifying the resulting matrix To create equations that are like, for example:

u(0,y) = 0:



Alternative numerical methods for PDEs:

Finite Element Method

Expand in a mesh of simplexes (i.e. triangles), on which the solution is interpolated using polynomials

Uses Green's functions on the boundary to construct the solution in an interior domain

e.g. Crank-Nicholson, Modal methods

