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Class Test 2

St.Id: Name:

There are three questions in this test, total time 50 min.

Q1. Consider the following LP problem: 10 marks
minz = —4x; — 5x,
S.t. 2x1+3x, <6
3x1 + X > 3
X1, X5 =0

Use one of Simplex methods in tabular form to solve the problem:

a) Specify the initial basis

b) Write the initial tableau in a canonical form

c) Solve the problem with the chosen Simplex method

d) State the optimal value of objective function and the optimal
solution.
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Use the next page to provide the solution:
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Please provide vour solution for O1 here:
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Q2 is on page 3
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2. Brg M e tuo

minz = —4x; — 5x,
S.t. 2x1 +3x, <6
3x;1 +x, =3
X1, X, =20
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1. Two -phase  meAwo oA
minz = —4x; — 5x,
s.t. 2x1 +3x, <6
3x1 +x2 > 3
xll xZ 2 0
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Q2. For the following LP problem 10 marks
minz = 2x; + 3x, — X3
st x1+2x, +x3=2
X1 — Xy, —x3=1
xours, x, <0, x3=0

State the dual problem, simplify its statement if possible. Provide a

brief explanation on how the dual problem has been constructed.

Please provide yvour solution below:
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Use the next page to provide the solution:
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Please provide your solution for O2 here:

Dual Mmant Ay, Ya
S.t. “31 —%“37_: 2
29, - Y 3

431‘/\31éh\

D
D
D
O

Yy 20 g URS

o i et LA g
minz = 2x; + 3x, — X3
st x1+2x, +x3 =2
xl—xZ_X3:1

xyurs, x, <0, x3=>0

ag@{mL*VCQ&Q oo

1. Bring 19 nov el for e

| f b _ oy

—-)CI :I| —'I‘)_ 5 OC’;). - 2
® ©

X1—X,—Xx3=1 — 1\“3(1”3C3

')C( —'X)‘I}

Prim ol i yormol $orm
o \ t !

Man L = ARy - AN DX, T Xy

( v |
St ot mAx, Ay 2>
T S S
[ 1l
-+ X \3(2|*D(5 > -

| I I
20, O of, Ay 20

@ Q3 is on page 5



QWWW(COL o ad_
Mot LY e Yot Ya
SEd T Yy 2 A
“31_%14““335‘9« 0,
-y, Y2 = Yy ¢-3
DR O
Yo s Y
SKW\PUQ—QQC& dwod L et M = T Y @
Thend
Y Gy &fj|'r%

qé\*%‘l 3\+%éla 3‘+%@l
— 3l+%>/<1,

_r\j| - QU
() | -a w5

mou 9\"31‘\'%

St 31‘{'%:1 @
Qvﬂ ~U 23
/\3‘— MW & -



UNIVERSITY OF
37242 Optimisation in Quantitative management TECHNOLOGY SYDNEY

Q3. Prove that if A is an n X n positive definite matrix, then all
eigenvalues of A are positive.

Please provide yvour solution below:
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