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Class Test 2
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There are three questions in this test, total time 50 min.

Q1. Consider the following LP problem: 10 marks
minz = —x; — 2x,
S.t. 3x, + 2x, < 24
X1 + X > 4
X1, X5 =0

Use one of Simplex methods in tabular form to solve the problem:

a) Specify the initial basis

b) Write the initial tableau in a canonical form

c) Solve the problem with the chosen Simplex method

d) State the optimal value of objective function and the optimal
solution.
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Use the next page to provide the solution:
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Please provide vour solution for O1 here:
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Q2 is on page 3
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Q2. For the following LP problem 10 marks
minz = 4x; + 2x, — x3
st. x1+2x, <6
X1 — Xy +2x3 =8
X1, Xo =0, x3 urs

State the dual problem, simplify its statement if possible. Provide a

brief explanation on how the dual problem has been constructed.

. . » Asymmetric dual:
Please provide yvour solution below: y

apply the following rules:
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Use the next page to provide the solution:
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Q3. Prove that if A is an n X n negative definite matrix, then all
eigenvalues of A are negative.

Please provide yvour solution below:
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