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Table of formulae for Class Test 2 

Simplex tableau: 

 

 

Primal problem in a normal form Dual problem in a normal form 

min  z = cTx 

 s.t.        Ax ≥ b,            (P) 
            x ≥ 0 
xj𝑥𝑗 ∈ 𝑥,  𝑗 = 1. . 𝑛   - primal variable,  

associated with  jth constraint in the 
dual problem 

max  w = bTy 

 s.t.        ATy ≤ c,            (D) 
                 y ≥ 0 

𝑦𝑖 ∈ 𝑦,  𝑖 = 1. . 𝑚   - dual variable, associated 

with ith constraint in primal  problem 

 

Asymmetric dual rules: 

 

 

Strong Duality theorem: 

Consider primal LP (P) and the corresponding dual LP (D).  

Then  𝒄𝑻𝒙 = 𝒃𝑻𝒚, if and only if x is a primal optimal solution and y is a dual 

optimal solution.  

 

Complementary slackness theorem: 

Let 𝑥 be a feasible solution to the primal LP (P) and 𝑦 be a feasible solution to 

the dual LP (D). Both solutions 𝑥𝑇 = (𝑥1,  𝑥2, … , 𝑥𝑛) and 𝑦𝑇 = (𝑦1, 𝑦2, … , 𝑦𝑚)  are 

optimal to the primal (P) and dual (D), respectively, if and only if they satisfy 

  (𝒄𝒊 − 𝒚𝑻𝑨𝒊)𝒙𝒊 = 𝟎, 𝒊 − 𝟏. . 𝒏   and    𝒚𝒋(𝒃𝒋 − 𝑨𝒋𝒙) = 𝟎, 𝒋 = 𝟏 … 𝒎 
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Unconstrained non-linear optimisation – some results 

➢ Theorem 1. Assume that 𝑓(𝑥) has continuous second-order partial 

derivatives for each point 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛). Then 𝑓(𝑥)  is convex function on D   

if and only if for each   𝑥∈ D all principal minors of its Hessian are nonnegative.  

➢ Theorem 2. Assume that that 𝑓(𝑥) has continuous second-order partial 

derivatives for each point 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛). Then 𝑓(𝑥)  is concave function on 

D   if and only if for each   𝑥∈ D  and 𝑘 = 1 … 𝑛  all nonzero 𝑘𝑡ℎ   principal minors 

of its Hessian matrix have the same sign as (−1)𝑘.  

➢ Theorem 3.  If f(x) is a convex function and 𝑆 is a convex set, then any local 

minimum of the minimisation NLP 

                                                               min 𝑓(𝑥) 

𝑠. 𝑡.   𝑥 ∈  𝑆 

is also a global minimum. If f(x) is a strictly convex function, then the global 

minimum will be unique. 

➢ Theorem 4. A symmetric matrix A is positive definite if and only if all its 

eigenvalues are positive. Note: we can also calculate the upper left 

determinants 

➢ Theorem 5. (Second-order necessary condition) If 𝑥∗ is a local minimum for 

an unconstrained NLP problem 𝑚𝑖𝑛 𝑓(𝑥),  then  

∇f(𝑥∗) = 0, and  𝛻2f(𝑥∗) is positive semidefinite. 

➢ Theorem 6. (Second-order sufficient condition)   

If ∇f(𝑥∗) = 0, and 𝛻2f(𝑥∗) is positive definite,  

then 𝑥∗ is a local minimum for the unconstrained NLP problem min 𝑓(𝑥). 

➢ Theorem 7. Consider a function 𝑓(𝑥) defined in a convex domain. Then 

Necessary condition for convexity: if  𝑓(𝑥) is convex , then 𝛻2𝑓(𝑥)  is positive 

semidefinite everywhere in its domain. 

Sufficient condition for strict convexity:  Function 𝑓(𝑥) is strictly convex if its 

Hessian matrix 𝛻2𝑓(𝑥) is positive definite for all 𝑥 in its domain.  


