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Table of formulae for Class Test 2

Simplex tableau:

basis XN XB rhs basis XN, XB, rhs
T — T T T — Tp-1 T Tp-1 T Tp-1
z |eEBIN—-ck | 07 |c¢fB™'b z | egB7 No—cy, | cgB™ —cp, | cgB™'b
—1 -1 XB B_IN{] B_l B_lb
XpB BN I B~'b

Primal problem in a normal form Dual problem in a normal form

min z =c'x max w =bTy
s.t.  Ax=>b, (P) s.t.  Aly<g, (D)
x=0 y=0
x; € x, j = 1..n - primal variable, y; €y, i =1..m -dual variable, associated

associated with jth constraint in the

with ith constraint in primal problem
dual problem : P P

Asymmetric dual rules:

primal/dual constraint dual /primal variable
consistent with normal form <= variable > 0
reversed with normal form <= variable < 0
equality constraint =2 variable urs

Strong Duality theorem:
Consider primal LP (P) and the corresponding dual LP (D).
Then c¢'x = b'y, if and only if x is a primal optimal solution and y is a dual

optimal solution.

Complementary slackness theorem:

Let x be a feasible solution to the primal LP (P) and y be a feasible solution to

the dual LP (D). Both solutions x = (x, x5, ..., x,) and yT = (y1,¥3, ..., V) are

optimal to the primal (P) and dual (D), respectively, if and only if they satisfy
(ci—¥y"ADx;=0,i—1.n and yj(b;—Ajx)=0,j=1..m
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Unconstrained non-linear optimisation — some results

» Theorem 1. Assume that f(x) has continuous second-order partial
derivatives for each point x = (x4, x,, ..., ;). Then f(x) is convex function on D

if and only if for each x€ D all principal minors of its Hessian are nonnegative.

» Theorem 2. Assume that that f(x) has continuous second-order partial
derivatives for each point x = (xq,x,,...,x,). Then f(x) is concave function on
D ifand only if for each x€ D and k = 1..n all nonzero k'* principal minors

of its Hessian matrix have the same sign as (—1).

» Theorem 3. If f{x)is a convex function and S is a convex set, then any local

minimum of the minimisation NLP

min f(x)
s.t. x € §
is also a global minimum. If f(x) is a strictly convex function, then the global

minimum will be unique.

» Theorem 4. A symmetric matrix A is positive definite if and only if all its
eigenvalues are positive. Note: we can also calculate the upper left
determinants

» Theorem 5. (Second-order necessary condition) If x* is a local minimum for

an unconstrained NLP problem min f(x), then
Vi(x*) = 0, and V?f(x*) is positive semidefinite.
» Theorem 6. (Second-order sufficient condition)
If Vf(x*) = 0, and V2f(x*) is positive definite,
then x* is a local minimum for the unconstrained NLP problem min f (x).
» Theorem 7. Consider a function f(x) defined in a convex domain. Then

Necessary condition for convexity: if f(x) is convex , then V?f(x) is positive

semidefinite everywhere in its domain.

Sufficient condition for strict convexity: Function f(x) is strictly convex if its

Hessian matrix V2f(x) is positive definite for all x in its domain.



