
Detailed Notes – Part 1

Introduction to Mathematical Optimisation

1 What is Mathematical Optimisation?

Mathematical optimisation (alternatively, mathematical programming) is the 
is a field of applied mathematics that is concerned with solution of quantitative 
problems. Mathematical programming includes linear programming (LP), 
nonlinear programming (NLP) and integer programming (IP). Please note, 
that  “programming” does not specifically refer to computer programming – 
indeed, these terms were first used before computer programming (as we know 
it today) really existed. However, producing an algorithm that could be 
used by a computer is the ultimate aim. We will look in  depth at the 
mathematics of mathematical programming, and hopefully gain a good 
understanding of the methods used to solve them. 

The general form of the mathematical programming problems is shown as 
follows:

max (or min) z = f(x)
subject to g(x) ≤ (or ≥) 0,

x ≥ 0.

The bold type for x and g(·) is entirely deliberate – it indicates that
they are vectors. For example, a maximisation problem with four decision
variables and three constraints would look like:
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max z = f(x1, x2, x3, x4)
s.t. g1(x1, x2, x3, x4) ≤ 0,

g2(x1, x2, x3, x4) ≤ 0,
g3(x1, x2, x3, x4) ≤ 0,

x1, x2, x3, x4 ≥ 0.

We refer to function f as the objective function.
The set S = {x : g(x) ≤ 0 and x ≥ 0} is called the feasible region. Note

that over this set we have

z = max
x∈S

f(x) = −min
x∈S

(

− f(x)
)

i.e. any maximisation problem can be written as a counterpart minimisation 
version, and vice versa.

The general approach to solving an optimisation problem is first to for-
mulate the problem by expressing the objective and constraints in terms of 
the decision variables. Formulation usually commences with a clear defini-
tion of the decision variables, the variables over which the decision maker 
has control. It is then usual to express the objective, the quantity to be 
maximised or minimised, in terms of the decision variables. The constraints 
and/or the restrictions on the values that the decision variables can take are 
then constructed. For the case when the objective and all constraints are 
linear, the problem is referred to as a linear program.

Then we try to solve the formulated LP problem. In the case of an LP 
with only two decision variables, a graphical solution approach, which will 
be introduced in Section 2.2, would be sufficient to yield an optimal solu-
tion. For LP problems with a greater number of decision variables, numerical 
techniques such as the Simplex method or its variants are used. These are 
usually implemented in software packages, such as LINDO, LINGO, Excel, 
and CPLEX to name but a few. Other types of mathematical programs 
could also be solved using the Solver Add-in in Excel and some of the above 
optimisation packages.

1.1 Examples of Applications

Some simple practical applications of mathematical optimisation are :
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• Blending petroleum products: the problem is to choose which end
products to produce from some raw products; the objective is to max-
imise the profit, subject to constraints on quantity of components of
petroleum available (LP).

• Portfolio design: the problem is to choose which assets to hold; the
objective is to maximise the expected return subject to constraints on
maximum levels of risk acceptable (NLP).

• Aircrew scheduling: the problem is to assign crew to flights; the objec-
tive is to minimise the cost to an airline (wages plus accommodation
expenses, etc) subject to all flights having the required crew, all crew
returning to their home bases, and all union and legal requirements on
work schedules met (IP).

1.2 Examples of Mathematical Programs

Below are some simple examples of mathematical programs including LP,
NLP, and IP.

max 2x1 + 3x2

s.t. x1 + 3x2 ≤ 6
3x1 + 5x2 ≤ 15

x1, x2 ≥ 0

min x3
1 + 2x2

1x2 + 5x4
2

s.t. 2x1 + x2 ≥ 4
3x2

1 + 2x2 ≥ 5
x1, x2 ≥ 0

max x1 − 2x1x2 + 5x2

s.t. x1 + x2 ≤ 4
x1, x2 ≥ 0, x1, x2 integer
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1.3 Complications

Consider the following NLP

max f(x) = x3 − 3x
s.t. x ≤ 2,

x ≥ 0.

On the feasible interval 0 ≤ x ≤ 2, f(x) has only one stationary point
(where f ′(x) = 0), which is x0 = 1. Hence the required value can be found
by comparing the value f(1) with the values at the two end points, x1 = 0
and x2 = 2 (two extreme points of the interval [0, 2]), i.e.

max
x∈[0,2]

f(x) = max{f(0), f(1), f(2)}

= max{ 0,−2, 2 } = f(2) = 2.

So, for mathematical optimisation problems, why can’t we just check all the
extreme points (a generalisation of the end points in the 1-D instances) and
the stationary points?

Firstly, solving f ′(x) = 0 or finding the extreme points could not be trivial
if the objective function or the feasible set is “ugly”? Another even bigger
problem that we come up against is that there could be a large number of
these extreme points. Consider a 2-D problem where the feasible set is a
square. Then there exist 4 extreme points. If x is a 3-D vector, we might
have a cube as the feasible region, which has 8 extreme points. It is common
that real-world LP problems have thousands of variables. Then they could
have more than 21000 ≈ 1.07× 10301 extreme points!

So the kernel is how to find an optimal solution without a full enumera-
tion of extreme points. Let’s start from LP, where the stationary points are
unnecessary to be taken into consideration due to the linearity of the objec-
tive function. To solve an LP, we obviously need to identify which extreme
point might be a good solution, perhaps stepping from one to another in the
direction that will improve the objective function value. Then we can be
guided to approach an optimal solution. This is, actually, the basic concept
of the Simplex method.

Before introducing LP and the Simplex method, we begin with a brief
revision of fundamental linear algebra.
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2 Revision of Basic Linear Algebra

2.1 Vectors and Matrices

Linear algebra is in some sense the “language” of LP in particular, and
mathematical optimisation in general. It is a very important shorthand for
the problems in higher dimensions that we will encounter.

Vector: A vector of dimension n is an ordered collection of n elements,
which are called components.

Consider an n-dimensional variable vector

x =











x1

x2
...
xn











.

Vector x is called non-negative, denoted by x ≥ 0, if we have xi ≥ 0 for
each i ∈ {1, 2, · · · , n}.

In this subject, vectors are written by default as column vectors, unless
otherwise specified. When we want a row vector, we write, for example

cT = (c1, c2, . . . , cn),

which is called c transpose.

If two vectors have the same dimension, then we can take the dot product
(or inner product), which gives us a scalar. This can be written in a few
ways:

c · x = cTx = c1x1 + c2x2 + . . .+ cnxn =

n
∑

k=1

ckxk.

Mostly, the notation cTx will be adopted in this subject.
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Matrix: A matrix is an array of numbers, for example,

A =











a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn











is an m× n matrix (m rows and n columns).

For each j ∈ {1, 2, · · · , n}, let Aj be the vector of the jth column of
matrix A, i.e.

Aj =











a1j
a2j
...

amj











.

Then matrix A can be written in the form

A = (A1, A2, · · · An).

Matrices can also be transposed. The transpose of A is denoted by AT ,
is given by

AT =











a11 a21 · · · am1

a12 a22 · · · am2
...

...
...

a1n a2n · · · amn











,

which is an n×m matrix (n rows and m columns).

A matrix can be multiplied by another one if the number of columns in
the first one is identical to the number of rows in the second one. If A is an
m× n matrix, and B is an n× p matrix, then AB is an m× p matrix, given
by

AB =










a11b11 + a12b21 + · · ·+ a1nbn1 · · · a11b1p + a12b2p + · · ·+ a1nbnp
a21b11 + a22b21 + · · ·+ a2nbn1 · · · a21b1p + a22b2p + · · ·+ a2nbnp

...
...

am1b11 + am2b21 + · · ·+ amnbn1 · · · am1b1p + am2b2p + · · ·+ amnbnp











.
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Each element of the new matrix, (AB)ij, is the dot product of the i
th row of

A and the jth column of B. Note that, in general AB 6= BA.
An n-dimensional (column) vector can be regarded as an n × 1 matrix,

and its transpose is a 1×n matrix. Hence cTx is just a special case of matrix
multiplication.

We will also use the product of a matrix and a vector as shown below
frequently in this subject.

Ax =











a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn



























x1

x2

·
·
·
xn

















=











a11x1 + a12x2 + · · ·+ a1nxn

a21x1 + a22x2 + · · ·+ a2nxn

...
am1x1 + am2x2 + · · ·+ amnxn











One of the ways we use matrices is to abbreviate a whole list of linear
inequalities, for example, we will write Ax ≤ b, where A is an m×n matrix,
x is an n-dimensional vector and b is an m-dimensional vector. This is
equivalent to

a11x1 + a12x2 + · · ·+ a1nxn ≤ b1
a21x1 + a22x2 + · · ·+ a2nxn ≤ b2

...
am1x1 + am2x2 + · · ·+ amnxn ≤ bm

We can solve a system of linear equationsAx = b by Gaussian elimination
(By using elementary row operations, the augmented matrix is reduced to
row echelon form). It may have no solution, a unique solution, or an infinite
number of solutions.1

1Please see p.29–32 in “Operations Research: Applications and Algorithms” (Winston,
2004).
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Consider that B is a square matrix (say m×m). Then its inverse matrix
B−1 may exist, and

BB−1 = B−1B = I,
where I is an m × m identity matrix.

If B−1 exists, then the system of equations Bx = b has a unique solution 
which can be obtained by

x = B−1b.

In this case, we can use Gaussian-Jordan elimination (By using 
elementary row operations, the augmented matrix is reduced to reduced 
row echelon form). To solve Bx = b by this method, we set up an 
augmented matrix (B|b) and use elementary row operations (EROs) to 
reduce the left part of the augmented matrix to the identity matrix.

The three EROs are:

1. Multiply one row by a constant.

2. Add a multiple of one row to another row.

3. Swap two rows.

This takes us from
(B|b)

to
(B−1B|B−1b) = (I|B−1b).

So the solution is revealed in the right hand side of the resulting aug-
mented matrix.

Consider the following example. To solve the system of equations

x1 + 2x2 + x3 = 5,
2x1 + 4x2 = 6,
x1 + 3x2 = 6,

we have the matrix form





1 2 1
2 4 0
1 3 0









x1

x2

x3



 =





5
6
6



 .
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So its augmented matrix (B|b) is





1 2 1 5
2 4 0 6
1 3 0 6



 .

Then we conduct the EROs as follows:





1 2 1 5
0 0 −2 −4
0 1 −1 1



 R′

2 ← R2 − 2R1

R′

3 ← R3 − R1





1 2 1 5
0 1 −1 1
0 0 −2 −4



 R′′

2 ← R′

3

R′′

3 ← R′

2





1 2 1 5
0 1 −1 1
0 0 1 2





R′′′

3 ← −
1
2
R′′

3





1 2 0 3
0 1 0 3
0 0 1 2





R′′′′

1 ← R′′′

1 −R′′′

3

R′′′′

2 ← R′′′

2 +R′′′

3





1 0 0 −3
0 1 0 3
0 0 1 2





R′′′′′

1 ← R′′′′

1 − 2R′′′′

2

So the solution is

x =





x1

x2

x3



 =





−3
3
2



 .

The matrix inverse can be found by a similar process. Note, though, that
finding solutions or finding the inverse can take a substantial amount of work!
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2.2 Graphical Solution of LP Problems

If we have an LP with just two variables, then we can solve it by drawing
a 2-D diagram. In particular, we draw each of the lines corresponding to
the constraints, e.g. for the constraint 3x1 + 2x2 ≤ 120, we draw the line
3x1 + 2x2 = 120. Consider the following example

3x1 + 2x2 ≤ 120,
x1 + x2 ≤ 50,
x1, x2 ≥ 0.

After drawing each constraint line in 2-D diagram, we then shade the feasible
region (it’s usually easiest to check whether the origin is on the feasible side
or not). Then the feasible region with the following four extreme points
(0, 0), (0, 50), (40, 0) and (20, 30) can be obtained.

Finally, we consider a series of lines defined by the objective function,
e.g. if we have max z = 5x1 + 4x2, then we consider 5x1 + 4x2 = c for any
constant c. It is a level curve for the objective function. It is like a contour
line on a map retaining the same altitude – all points on this line have the
same objective function value. This level curve is called an iso-profit line for
a maximisation problem, and an iso-cost line in a minimisation sense.

These lines are parallel to each other, so it is like sliding a ruler across
the page as c increases in a maximisation sense. We finally get the last point
(which is definitely an extreme point) or line segment (which connects two
extreme points) where the ruler just touches the feasible region – that is an
optimal solution(s). There are four possible outcomes from this procedure:

• There is a unique optimal solution;

• There are an infinite number of optimal solutions;

• There is no feasible solution to the LP, and hence no optimal solution
exists;

• The problem is unbounded (and the solution can be boundlessly im-
proved).

Further reading: Chapter 2 and 3 in the reference book “Operations Research: Ap-
plications and Algorithms” (Winston, 2004)
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