
Lecture Notes – Part 10

Integer Programming (I)

1 Introduction

An integer program (IP) is a mathematical programming problem 
in which some or all of the variables are required to be integers. 
In most settings (including that in this subject), this term refers 
to integer linear program, in which the objective function and the 
constraints (other than the integer constraints) are linear. An IP 
is called

• a pure IP if all variables are required to be integers,

• a 0-1 IP or binary IP if all variables must be 0 or 1, and

• a mixed IP if only some of the variables are required to be

integers.

A first approximation to the solution of an IP may be obtained

by ignoring the integer requirement and solving the resultant LP.

This LP is called the LP relaxation of the considered IP. The LP

relaxation can be thought of as being less constrained or more

relaxed than the IP for the feasible region of the IP lies within

that of the LP relaxation. Thus, the optimal objective value of

the LP relaxation is no worse, i.e. no less (for max. problems) or

no greater (for min. problems) than the corresponding IP.

1



If the first approximation happens to be an integer solution or

partial integer solution as required, then this solution is also an

optimal solution to the original IP. Otherwise, we round the com-

ponents which are not integers but are required to be integers of

the first approximation to the nearest feasible integers and obtain

a second approximation. The procedure will be repeated until the

solution to the original IP is yielded.

We introduce two techniques for IPs retaining similar notions –

the branch-and-bound algorithm and the cutting-plane algorithm.

2 Branch-and-Bound Algorithm

The branch-and-bound (B&B) method searches an optimal solu-

tion of an IP by efficiently enumerating the extreme points in the

feasible regions of subproblems.

2.1 Branching

First we solve the LP relaxation of the considered IP. Assume

that the first approximation, x∗ = (x∗1, x
∗

2, . . . , x
∗

n)
T , contains a

variable whose value is not an integer as required, say x∗j . Since

the band
{

x : ⌊x∗j⌋ < xj < ⌊x∗j⌋ + 1
}

cannot contain a feasible

integer solution, a feasible integer value of xj must satisfy one of

the two conditions xj ≤ ⌊x
∗

j⌋ or xj ≥ ⌊x
∗

j⌋ + 1. Applying these

two conditions respectively to the original LP relaxation yields two

new LPs (one LP for each additional constraint). This process,

called branching, has the effect of shrinking the feasible region.

After the first branching, we arbitrarily choose one of these two

2



LP subproblems, which have the same objective function as the

original IP, to solve. If its optimum is feasible with respect to the

considered IP, i.e. an integer solution or partial integer solution

as required, then it is recorded as the best one so far available,

which is called the incumbent solution.1 If this is not the case,

we may need to do the second branching. The subproblem for

further branching must be partitioned into two new subproblems

by again imposing the integer conditions on one of its variable(s)

that currently have fractional values.

After each branching, an ‘integer solution’ obtained by solv-

ing a subproblem is called a candidate solution. If a candidate

solution has a better objective value than that of the incumbent

solution, the incumbent solution has to be updated and replaced

with it. Once a candidate solution is obtained, we don’t need to

perform the further branching. If neither the obtained solution is

an integer solution nor the further branching could yield a candi-

date solution better than the incumbent one2, it is unnecessary to

branch on a subproblem either. This termination is called fath-

omed. The process of branching, where applicable, continues until

each subproblem either terminates with a candidate solution or is

fathomed. In this case the incumbent solution in hand, if any, is

the optimal solution of the considered IP problem.

1The objective value of this optimum won’t be better than the solution obtained from
the LP relaxation.

2The step to recognise this situation is called “bounding”, which will be introduced
later.

3



2.2 Bounding

The efficiency of the computations in B&B can be enhanced by

introducing the concept of bounding. Once a candidate solution

is found, its associated objective value can be used as a bound to

discard inferior subproblems (an upper bound for min. problems

and a lower bound for max. problems).

The efficiency of calculations tends to depend directly on the order

in which the different subproblems are generated and scanned.

The specific problems generated depend on the variable selected

for branching. Unfortunately, there is no definite best way for

selecting the branching variable or the specific sequence in which

subproblems must be scanned. Below are two general approaches

which are commonly used to determine which subproblems should

be solved next.

• The LIFO rule: The most widely used is the Last-In-First-

Out (LIFO) rule, which chooses to solve the most recently

created subproblem. LIFO leads us down one side of the

branching tree and quickly finds a candidate solution. Then

we backtrack to the top of the other side of the tree. For this

reason, the LIFO approach is often called backtracking.

• The Jumptracking rule: The jumptracking approach solves

all the problems created by a branching and then branches on

the node with the best z-value. Jumptracking often jumps

from one side of the tree to the other. The idea behind

jumptracking is that moving toward the subproblems with

4



good z-values should lead us more quickly to the optimal

solution. It usually creates more subproblems and requires

more computer storage than backtracking, though.

In this chapter, LIFO rule is assumed to be adopted if it is not

stated otherwise.

Example 1. Solve the following pure IP using the B&B algo-

rithm, and illustrate the process with a branching tree diagram.

max z = 8x1 + 5x2

s.t. x1 + x2 ≤ 6

9x1 + 5x2 ≤ 45

x1, x2 ≥ 0, integer

Solution:

• Subproblem 1. The subproblem 1 is always the LP re-

laxation, where the integer restriction is lifted. Adding the

slack variables x3 and x4, and then choosing them as the

initial basis, the Simplex method gives

5



basis x1 x2 x3 x4 rhs

z -8 -5 0 0 0

x3 1 1 1 0 6

x4 9 5 0 1 45

z 0 -5
9

0 8

9
40 R0 ← R0 + 8(new)R2

x3 0 4

9
1 -1

9
1 R1 ← R1 +

5

9
(new)R1

x1 1 5

9
0 1

9
5 R2 ←

1

9
R2 (go first)

z 0 0 5

4

3

4

165

4
R0 ← R0 +

5

9
(new)R1

x2 0 1 9

4
-1
4

9

4
R1 ←

9

4
R1 (go first)

x1 1 0 -5
4

1

4

15

4
R2 ← R2 −

5

9
(new)R1

The solution of subproblem 1 is (x∗
1
, x∗

2
) = (15

4
, 9

4
) with zmax =

165

4
. Since the values of both decision variables are not integers,

we arbitrarily branch the subproblem 1 on x1 into the following

two additional subproblems:

Subproblem 2 = Subproblem 1 + Constraint x1 ≥ 4;

Subproblem 3 = Subproblem 1 + Constraint x1 ≤ 3.

• Subproblem 2. A new constraint x1 ≥ 4 is added into

Subproblem 1. Introducing a new surplus variable x5, we ap-

pend the new constraint x1 − x5 = 4 to the final tableau of

Subproblem 1. Applying the technique for adding a new con-

straint to an LP3, we need to express this constraint in terms

3Please refer to “Sensitivity Analysis” in Lecture Note – Part 6.

6



of nonbasic variables. From the final tableau of Subproblem

1, we have

−4 = −x1 + x5 = −
(15

4
+

5

4
x3 −

1

4
x4

)

+ x5

⇒ −
5

4
x3 +

1

4
x4 + x5 = −

1

4

Now this equality is ready for being added to the final tableau

of Subproblem 1 with an extra basic variable x5 and one pivot

column for it. Since the rhs of the new constraint is negative,

the infeasibility is incurred. To continue solving the problem,

the dual Simplex method shall be applied to fix the feasibility.

basis x1 x2 x3 x4 x5 rhs

z 0 0 5

4

3

4
0 165

4

x2 0 1 9

4
-1
4

0 9

4

x1 1 0 -5
4

1

4
0 15

4

x5 0 0 −5

4

1

4
1 - 1

4

z 0 0 0 1 1 41 R0 ← R0 + (old)R3

x2 0 1 0 1

5

9

5

9

5
R1 ← R1 −

9

4
(new)R3

x1 1 0 0 0 -1 4 R2 ← R2 − (old)R3

x3 0 0 1 −1

5
- 4

5

1

5
R3 ← −

5

4
R3 (go first)

7



The solution of Subproblem 2 is (x∗
1
, x∗

2
) = (4, 9

5
) with zmax = 41.

Since x∗
2
in not integer, Subproblem 2 is branched on the variable

x2 into the following two additional subproblems

• Subproblem 4 = Subproblem 2 + Constraint x2 ≥ 2,

• Subproblem 5 = Subproblem 2 + Constraint x2 ≤ 1

At this point, a branching tree diagram of the solution process is

Subproblem 4 Subproblem 5

Subproblem 2

z = 41

x1 = 4

x2 =
9

5

x 2
≥
2 x

2
≤
1

it = 2

Subproblem 3

it = 3

Subproblem 1

z = 165

4

x1 =
15

4

x2 =
9

4

x 1
≥
4 x

1
≤
3

it = 1

The unsolved problems are Subproblems 3, 4 and 5. Following

the LIFO rule, we should choose Subproblem 4 or Subproblem

8



5. We arbitrarily choose to solve Subproblem 4. Before trying

to solving it with the same approach as previous Subproblem 2,

we check its feasibility first. Since x1 ≥ 4 and x2 ≥ 2 gives

9x1 + 5x2 ≥ 46, which contradicts the original constraint 9x1 +

5x2 ≤ 45, this subproblem is infeasible and therefore cannot yield

an optimal solution to the considered IP. A mark X is to be

placed on Subproblem 4 to indicate that it is fathomed. This

branch now is eliminated.

The LIFO rule implies that Subproblem 5 should be solved

next. Continuing the procedure, we obtain the following branch-

ing tree diagram.

9



Subproblem 4

Infeasible

X

it = 3

Subproblem 5

z = 365

9

x1 =
40

9

x2 = 1

it = 4

Subproblem 2

z = 41

x1 = 4

x2 =
9

5

x 2
≥
2 x

2
≤
1

it = 2

Subproblem 3
z = 37
x1 = 3
x2 = 3

z ≤ LB = 40 X

it = 7

Subproblem 1

z = 165

4

x1 =
15

4

x2 =
9

4

x 1
≥
4 x

1
≤
3

it = 1

Subproblem 6
z = 40
x1 = 5
x2 = 0

Incumbent solution
LB = 40

it = 5

x 1
≥
5

Subproblem 7
z = 37
x1 = 4
x2 = 1

z ≤ LB = 40 X

it = 6

x
1
≤
4

So the optimal solution of the given IP is (x1, x2) = (5, 0) with

zmax = 40.

Example 2. Solve the following IP using the B&B algorithm,

10



and illustrate the process with a branching tree diagram.

max z = 6x1 + 3x2 + x3 + 2x4

s.t. x1 + x2 + x3 + x4 ≤ 8

2x1 + x2 + 3x3 ≤ 12

5x2 + x3 + 3x4 ≤ 6

x1 ≤ 1

x2 ≤ 1

x3 ≤ 4

x4 ≤ 2

x1,x2,x3,x4 ≥ 0, integer

SolutionUsing the B&B algorithm, we obtain the following branch-

ing tree diagram.

11



Subproblem 4

z = 10
x1 = 1, x2 = 1

x3 = 1, x4 = 0

Incumbent solution

LB = 10

Subproblem 5

z = 9.33

x1 = 1, x2 = 0

x3 = 3.33, x4 = 0

z ≤ LB = 10 X

it = 4

Subproblem 2

z = 10.85

x1 = 1, x2 = 0.57

x3 = 3.14, x4 = 0

x 2
=
1 x

2
=
0

it = 2

Subproblem 3

z = 11
x1 = 1, x2 = 0

x3 = 3, x4 = 1

Incumbent solution

Update LB = 11

it = 5

it = 3

Subproblem 1

z = 11.11

x1 = 1, x2 = 0

x3 = 3.33, x4 = 0.89

x 4
=
0 x

4
≥
1

it = 1

So the optimal solution of the given IP is (x1, x2, x3, x4) = (1, 0, 3, 1)

with zmax = 11.

Note that the constraints x1 ≤ 1 and x2 ≤ 1 coupled with

nonnegativity requirements mean that x1 and x2 are 0-1 variables,

i.e. binary variables. Variable x3 can take five possible values,

and variable x4 can have three possible values. Hence, there are

2 × 2 × 5 × 3 = 60 possible solutions. A computer can quickly

evaluate all 60 possibilities. However, as the problems grow in

size, a complete enumeration becomes impractical.

12



3 Combinatorial Optimisation Problems

This section will introduce the knapsack problem, assignment

problem and travelling salesman problem. These three problems

are representatives of a larger class of problems known as combi-

natorial optimisation problems, which have wide applications.

3.1 Knapsack Problem

The 0-1 knapsack problem is a particularly simple example of bi-

nary IP having only one constraint. Furthermore, the coefficients

of this constraint and the objective function are all nonnegative.

Example 3. There is a knapsack with a capacity of 14 units.

There are 4 items, each of which retains a size and a value, e.g.

item 1 has a size of 5 units and a value of 16 dollars, item 2 has a

size of 7 units and a value of 22 dollars, item 3 has a size of 4 units

and a value of 12 dollars, and item 4 has a size of 3 units and a

value of 8 dollars. The objective is to decide which items shall be

packed in the knapsack so as to maximise the total value of items

in the knapsack. Then the knapsack problem can be formulated

as follows.

max z = 16x1 + 22x2 + 12x3 + 8x4

s.t. 5x1 + 7x2 + 4x3 + 3x4 ≤ 14

x1, x2, x3, x4 = 0 or 1.

To solve the associated LP relaxation, it is simply a matter of

determining which variable gives the most “bang for the buck.” If

you take the ratio (the objective coefficient/constraint coefficient)

13



for each variable, the one with the highest ratio is the best item

to place in the knapsack. Then the item with the second highest

ratio is put in and so on until we reach an item that cannot fit.

At this point, a fractional amount of that item is placed in the

knapsack to completely fill it. In our example, the variables are

already ordered by the ratio. We would first place item 1 in and

then item 2, but item 3 doesn’t fit: there are only 2 units left,

but item 3 has a size of 4. Therefore, we take half of item 3. The

solution x1 = 1, x2 = 1, x3 = 0.5, x4 = 0 is the optimal solution

to the LP relaxation.

As we will see shortly, this solution is quite different from the

optimal solution to the original knapsack problem. Nevertheless,

it will play an important role in the solving with B&B.

Solution. We use the LIFO rule to determine which subproblem

should be solved first.

Subproblem 1.

As mentioned above, the solution of Subproblem 1 is x1 = 1,

x2 = 1, x3 = 0.5, x4 = 0 with zmax = 44. Then the problem is

branched into two subproblems by setting x3 = 1 (Subproblem 2),

and x3 = 0 (Subproblem 3).

Subproblem 2.

We arbitrarily choose to solve Subproblem 2 before subproblem

3. To solve problem 2 we set x3 = 1 and then solve the resulting

knapsack problem.

max z = 16x1 + 22x2 + 8x4 + 12

s.t. 5x1 + 7x2 + 3x4 ≤ 14− 4 = 10

x1, x2, x4 = 0 or 1.

14



Applying the technique used to solve the LP relaxation of a

knapsack problem gives the optimal solution x3 = 1, x1 = 1,

x2 =
5

7
with zmax =

306

7
.

Other subproblems can be solved with the same way. Below is

the branching tree diagram of the problem.

15



Subproblem 4

z = 433

5

x1 =
3

5
, x2 = 1

x3 = 1, x4 = 0

it = 3

Subproblem 5

z = 36
x1 = x3 = 1

x2 = 0, x4 = 1

z ≤ LB = 42, X

it = 6

Subproblem 2

z = 435

7

x1 = x3 = 1

x2 =
5

7
, x4 = 0

x 2
=
1

x
2
=

0

it = 2

Subproblem 3

z = 431

3

x1 = x2 = 0

x3 = 0, x4 =
2

3

⌊z⌋ = 43 > LB = 42

it = 7

Subproblem 1

z = 44

x1 = x2 = 1

x3 =
1

2
, x4 = 0

x 3
=
1 x

3
=
0

it = 1

Subproblem 6
z = 42

x1 = 0, x2 = 1
x3 = x4 = 1

Incumbent solution

LB = 42

it = 4

x1 = 0

Subproblem 7

Infeasible

X

it = 5

x
1 = 1

Subproblem 8

z = 38
x1 = x2 = 1

x3 = x4 = 0

z ≤ LB = 42 X

x
4 =

0

it = 8

Subproblem 9

z = 426

7

x1 = 1, x2 =
6

7

x3 = 0, x4 = 1

⌊z⌋ = 42 ≤ LB = 42 X

it = 9

x4 = 1

The optimal solution is x1 = 0, x2 = x3 = x4 = 1 with zmax =

42. Comparing with the LP relaxation, the highest priority item,

i.e. variable x1, is surprisingly not used.

16



3.2 Assignment Problem

The assignment problem is a combinatorial optimisation problem

of assigning a set of m workers to a set of m jobs with a one-to-

one matching of individuals to tasks for minimising the sum of

the corresponding assignment costs. Given a nonnegative m×m

matrix C = (cij), where cij, the element in the ith row and jth

column, represents the cost of assigning the ith worker to the jth

job, we aim to find an assignment that has the minimum of total

cost. The matrix C is called the cost matrix.

Binary IP for Assignment Problem

For each i = 1, . . . ,m and each j = 1, . . . ,m, let

xij =

{

1, if worker i is assigned to complete job j,

0, otherwise.

We obtain the binary IP below

min z =
∑m

i=1

∑m

j=1
cijxij

s.t.
∑m

j=1
xij = 1, for each i = 1, . . . ,m,

∑m

i=1
xij = 1 for each j = 1, . . . ,m,

xij = 0 or 1.

The first m constraints ensure that each worker i is employed to

process one and only one job. The last m constraints ensure that

each job j is assigned to one and only one worker.

The Hungarian Method

The Hungarian method is a combinatorial optimisation algo-

rithm which solves the assignment problem in polynomial time.

17



It was developed and published by Harold Kuhn in 1955, who

gave the name “Hungarian method” because the algorithm was

largely based on the earlier works of two Hungarian mathemati-

cians: Denes Konig and Jeno Egervary. The method consists of

three steps below:

1. Find the minimum element in each row of the cost matrix.

Construct a new matrix by subtracting from each cost the

minimum cost in its row. For this new matrix, find the min-

imum cost in each column. Construct another new matrix

(called the reduced cost matrix) by subtracting from each

cost the minimum cost in its column.

2. Draw the minimum number of lines (horizontal, vertical, or

both) that are needed to cover all the zeros in the reduced

cost matrix. If m lines are required, then an optimal solution

is available among the covered zeros in the matrix. If fewer

than m lines are needed, then go to Step 3.

3. Among all elements in the reduced cost matrix that are un-

covered by the lines drawn in Step 2, find the smallest nonzero

element, say c0. Construct a new reduced cost matrix by

• subtracting c0 from each uncovered element of the re-

duced cost matrix;

• adding c0 to each element of the reduced cost matrix that

is covered by two lines.

Then go to Step 2.

18



Example 4.

A manufacturing factory has four machines which can process

four sorts of tasks to be completed. The time required to set up

each machine for completing each job is shown in the table below.

Any machine which has been assigned to process a task cannot be

reassigned to another task. The factory manager aims to minimise

the total setup time needed to complete four jobs with these four

machines. Please solve this assignment problem via Hungarian

method.

Time (Hours)

Machine Task 1 Task 2 Task 3 Task 4

1 14 5 8 7

2 2 12 6 5

3 7 8 3 9

4 2 4 6 10

Solution.

For each i = 1, . . . , 4 and j = 1, . . . , 4, let

xij =

{

1, if machine i is assigned to task j;

0, otherwise.

The problem can be formulated by the following binary IP.

minimise

4
∑

i=1

4
∑

j=1

cijxij

subject to 4
∑

j=1

xij = 1, ∀i = 1, . . . , 4,

19



4
∑

i=1

xij = 1, ∀j = 1, . . . , 4,

xij ∈ {0, 1}, ∀i, j = 1, . . . , 4.

Denote the cost matrix by

c = [cij] =











14 5 8 7

2 12 6 5

7 8 3 9

2 4 6 10











Then we solve this assignment problem by Hungarian method

as shown below.

Step 1. We have the cost matrix with the row minimum as

shown below.

2 4 6 10 2

7 8 3 9 3

2 12 6 5 2

14 5 8 7 5

Row min.

For each row, we subtract the row minimum from each element

in the row, obtaining a new matrix with the column minimum as

shown below.

20



0 2 4 8

Column min. 0 0 0 2

4 5 0 6

0 10 4 3

9 0 3 2

Then we subtract 2 from each cost in column 4, obtaining the

reduced cost matrix shown as follows.

0 2 4 6

4 5 0 4

0 10 4 1

9 0 3 0

Step 2. After drawing the lines through row 1, row 3, and

column 1, we cover all the zeros in the reduced cost matrix with

the minimum number of lines, i.e. 3, which is smaller than m = 4.

Then we proceed to Step 3.

0 2 4 6

4 5 0 4

0 10 4 1

9 0 3 0

Step 3. The smallest uncovered element equals 1. Subtracting

1 from each uncovered element and adding 1 to each twice-covered

element give the new reduced cost matrix as shown below.

21



0 1 3 5

5 5 0 4

0 9 3 0

10 0 3 0

As shown below, four lines are now required to cover all zeros.

Thus, an optimal solution exists among the covered zeros in this

matrix.

0 1 3 5

5 5 0 4

0 9 3 0

10 0 3 0

To find an optimal solution we observe that the only zero in row

3 is cell (3, 3), so we must have x3,3 = 1. Similarly, the only zero

in row 4 is cell (4, 1), so we set x4,1 = 1. Then the zero(s) in either

column 1 or column 3 shall not be considered anymore. Now the

only available zero in row 2 is cell (2, 4), so we choose x2,4 = 1,

which excludes the zero(s) in column 4 from further consideration.

Finally, the only available choice for row 1 is x1,2 = 1.

Thus, the optimal solution is x1,2 = x2,4 = x3,3 = x4,1 = 1 with

the minimum total setup time of 5 + 5 + 3 + 2 = 15 hours.

Further reading: Section 9.1–9.5 and 7.5 in the reference book “Operations Research:
Applications and Algorithms” (Winston, 2004)

22


