
Lecture Notes – Part 11 

Integer Programming (II)

3 Combinatorial Optimisation Problems (cont.)

3.3 Travelling Salesman Problem (TSP)

The problem can simply be stated as follows. If a travelling sales-

man, who starts from the home city, wishes to visit exactly once

each of a list of m cities, where the cost of travelling from city i

to city j is c∗ij, and then return to his home city, what is the least

costly route the travelling salesman can take?

A binary IP for the TSP might be formulated as below. Firstly,

set up the cost matrix C by

cij =

{

c∗ij, if i 6= j;

M, otherwise,

where M is an extremely large positive number.

For each i = 1, . . . ,m and each j = 1, . . . ,m, let

xij =

{

1, if the salesman leaves city i and travel next to city j;

0, otherwise.

Then the binary IP could be shown as follows
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min z =
∑m

i=1

∑m

j=1
cijxij

s.t.
∑m

j=1
xij = 1, i = 1, . . . ,m,

∑m

i=1
xij = 1, j = 1, . . . ,m,

xij = 0 or 1.

The first m constraints ensure that the salesman leaves each city

exactly one time. The last m ensure that the salesman visits each

city just one time.

You may have noticed that it is exactly an IP model of the as-

signment problem. However, utilising the solution approach like

Hungarian method alone for the above binary IP could result in

separate cycles such that a single route cannot be generated. Ac-

tually, the above IP formulation for TSP hasn’t yet been finished.

To prevent separate cycles in TSP, we need

• add some additional constraints to the above binary IP, or

• use the B&B method which we are going to demonstrate.

Example 5. Noah Syndergaard lives in Gary, Indiana. He owns

insurance agencies in Gary, Fort Wayne, Evansville, Terre Haute,

and South Bend. Each December, he visits each of his insurance

agencies. The distance between each agency (in miles) is:
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City 1 City 2 City 3 City 4 City 5

(GA) (FW) (EV) (TH) (SB)

City 1 (GA) 0 132 217 164 58

City 2 (FW) 132 0 290 201 79

City 3 (EV) 217 290 0 113 303

City 4 (TH) 164 201 113 0 196

City 5 (SB) 58 79 303 196 0

What order of visiting his agencies will minimise the total distance

travelled?

Solution. We apply the B&B method to solve this TSP.

Take a large positive numberM , say M = 10000. The cost matrix

of the problem is

SubP1 City 1 City 2 City 3 City 4 City 5

City 1 M 132 217 164 58

City 2 132 M 290 201 79

City 3 217 290 M 113 303

City 4 164 201 113 M 196

City 5 58 79 303 196 M

Subproblem 1. For each i = 1, . . . , 5 and each j = 1, . . . , 5, let

xij =

{

1, if the Noah leaves city i and then travel to city j;

0, otherwise.

The assignment-problem binary IP is
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min z =
∑

5

i=1

∑

5

j=1
cijxij

s.t.
∑

5

j=1
xij = 1, i = 1, . . . , 5,

∑

5

i=1
xij = 1, j = 1, . . . , 5,

xij = 0 or 1.

Applying the Hungarian method to the cost matrix of the above

binary IP model, which is an assignment problem, we obtain an

optimal solution x15 = x52 = x21 = x34 = x43 = 1 with zmin = 495.

This solution contains two subtours (1-5-2-1) and (3-4-3) and can-

not be an optimal solution to the considered TSP. We will elim-

inate these subtours by branching Subproblem 1. We choose to

exclude the subtour (3-4-3). This can be done by setting either

x34 = 0 or x43 = 0. In other words, we branch on Subproblem

1 by adding each of these conditions. This yields following two

subproblems:

• Subproblem 2 = Subproblem 1 + (x34 = 0 by setting c34 =

M), and

• Subproblem 3 = Subproblem 1 + (x43 = 0 by setting c43 =

M).

We now arbitrarily choose Subproblem 2 to solve. The table

“SubP2” is the cost matrix for Subproblem 2.
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SubP2 City 1 City 2 City 3 City 4 City 5

City 1 M 132 217 164 58

City 2 132 M 290 201 79

City 3 217 290 M M 303

City 4 164 201 113 M 196

City 5 58 79 303 196 M

Applying the Hungarian method to this cost matrix, we obtain an

optimal solution x14 = x43 = x31 = x25 = x52 = 1 with zmin = 652.

This solution contains two subtours (1-4-3-1) and (2-5-2) and

again cannot be an optimal solution. We will eliminate these

subtours by branching Subproblem 2. We choose to exclude the

subtour (2-5-2). This can be done by setting either x25 = 0 or

x52 = 0. In other words, we branch on Subproblem 2 by adding

each of these conditions. This yields following two subproblems:

• Subproblem 4 = Subproblem 2 + (x25 = 0 by setting c25 =

M), and

• Subproblem 5 = Subproblem 2 + (x52 = 0 by setting c52 =

M).

We now arbitrarily choose Subproblem 4 to solve. The table

“SubP4” below is the cost matrix for Subproblem 4.
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SubP4 City 1 City 2 City 3 City 4 City 5

City 1 M 132 217 164 58

City 2 132 M 290 201 M

City 3 217 290 M M 303

City 4 164 201 113 M 196

City 5 58 79 303 196 M

Applying the Hungarian method to this cost matrix yields an

optimal solution x15 = x52 = x24 = x43 = x31 = 1 with zmin =

668. Now this solution contains no subtours and yields a single

route (1-5-2-4-3-1). Thus, Subproblem 4 produces a candidate for

optimal solution and an upper bound: Any subproblem that has

its objective value no less than UB = 668 will be eliminated from

consideration.

We now solve Subproblem 5. Its cost matrix is

SubP5 City 1 City 2 City 3 City 4 City 5

City 1 M 132 217 164 58

City 2 132 M 290 201 79

City 3 217 290 M M 303

City 4 164 201 113 M 196

City 5 58 M 303 196 M

Applying the Hungarian method to this cost matrix we obtain

an optimal solution x14 = x43 = x32 = x25 = x51 = 1. This
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solution is a tour, but zmin = 704 > UB = 668. Thus Subproblem

5 is eliminated from consideration.

Other subproblems can be solved similarly. Below is the branching

tree diagram of the TSP.
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Subproblem 4

z = 668

x15 = x52 = x24

= x43 = x31 = 1

Incumbent solution

UB = 668

it = 3

Subproblem 5

z = 704

x14 = x43 = x32

= x25 = x51 = 1

z ≥ UB = 668, X

it = 4

Subproblem 2

z = 652

x14 = x43 = x31 = 1

x25 = x52 = 1

x
2
5
=
0

x
5
2
=

0

it = 2

Subproblem 3

z = 652

x13 = x34 = x41 = 1

x25 = x52 = 1

z < UB = 668

it = 5

Subproblem 1

z = 495

x15 = x52 = x21 = 1

x43 = x34 = 1

x
3
4
=
0 x

4
3
=
0

it = 1

Subproblem 7

z = 910
x25 = x54 = x42 = 1

x31 = x13 = 1

z ≥ UB = 668 X

x
52 =

0

it = 7

Subproblem 6

z = 704
x15 = x52 = x23

= x34 = x41 = 1

z ≥ UB = 668 X

it = 6

x25 = 0

So an optimal solution to the considered TSP is x15 = x52 = x24 =

x43 = x31 = 1 with zmax = 668, obtained at Subproblem 4.
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TSP belongs in the class of combinatorial optimisation prob-

lems known as NP-complete. Specifically, if one can find an ef-

ficient algorithm (i.e., an algorithm that is guaranteed to find

an optimal solution in a polynomial number of steps) for any

NP-complete problem, then efficient algorithms exist for all other

problems in the NP-complete class. To date, however, no polynomial-

time algorithm for any NP-complete problem has been proved.

4 The Cutting Plane Algorithm

Similar to B&B methods, the cutting plane methods for pure or

mixed IPs work by solving the LP relaxation of the given IP. The

theory of LP dictates that under mild assumptions (if at least

an optimal solution exists) one can always find an extreme point

or a corner point that is optimal. The obtained optimum to LP

relaxation is tested for being an integer solution. If not, it is

guaranteed that there exists a linear inequality separating this

non-integer optimum from the feasible set of the given IP. To do

the separation, we find such an inequality which is called a cut. A

cut can be added to the LP relaxation to generate an LP relation

with a shrunk feasible region. Then, the current non-integer opti-

mal solution is no longer feasible to the cut LP relaxation, which

is a new LP relaxation subproblem. This process is repeated until

an optimal solution with integer values is found.
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Consider an IP problem in standard form

max (or min) z = cTx

s.t. Ax = b

x ≥ 0 and integer.

The cutting plane method proceeds by first dropping the re-

quirement that decision variables x be integers and solving the

associated LP-relaxation problem. Geometrically, the optimal so-

lution to the LP relaxation, which is a bfs, is a vertex of the convex

polygon consisting of all feasible points for the LP relaxation. If

the optimal-solution vertex is not an integer point, then we find

a hyperplane such that the vertex is located on one side and all

the feasible integer point(s) are on the other side. It is then intro-

duced as an additional linear constraint to exclude the vertex, and

a modified LP relaxation subproblem is generated. The generated

LP subproblem is then solved and the process is repeated until an

integer optimal solution is found.

Step 1. Using the Simplex method to solve an LP relaxation

subproblem produces a set of equations of the form

xi +
∑

j

aijxj = bi, (†)

where xi is a basic variable, the xj’s are the nonbasic variables,

aij’s are the constraint coefficients in the final optimal tableau,

and bi is the rhs in the final optimal tableau.
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Step 2. Pick a constraint (i.e. a row) in the final optimal

tableau whose rhs is not an integer, i.e. bi − ⌊bi⌋ > 0.∗ This

constraint will be used to generate a cut. Assume that the ith

constraint has been picked. Rewrite this equation (†) so that the

terms with integer coefficients are on the left side and the terms

with fractional coefficients are on the right side:

xi +
∑

j

⌊aij⌋xj − ⌊bi⌋ = (bi − ⌊bi⌋)−
∑

j

(aij − ⌊aij⌋)xj

Since the above equation stems from the equation (†), all feasible

solutions to the current LP relaxation subproblem satisfy it. Also,

since bi − ⌊bi⌋ < 1, aij − ⌊aij⌋ ≥ 0, and xj ≥ 0, the right side of

this equation is strictly less than 1. Hence, for any integer point

(i.e. xi, xj’s are integers) in the feasible region, the left side of

this equation is integer and thus the right side of this equation is

less than or equal to 0. So the inequality

(bi−⌊bi⌋)−
∑

j

(aij −⌊aij⌋)xj ≤ 0 (‡)

must hold for any integer point in the feasible region. We add

inequality (‡) as a new constraint into the current LP relaxation

subproblem. It is called the cut . Note that

• any feasible integer point for the current LP relaxation sub-

problem, i.e. any integer solution to the original IP, satisfies

the cut, and

∗In practice, a constraint in the LP relaxation’s optimal tableau whose rhs has the
fractional part closest to 1

2
would be picked.
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• the optimal solution to the LP relaxation subproblem, which

is not an integer solution with non-integer bi, does not sat-

isfy the cut since all nonbasic variables xj = 0 and hence the

inequality (‡) becomes

bi − ⌊bi⌋ ≤ 0, which is impossible since bi − ⌊bi⌋ > 0.

So this cut excludes the optimal solution, which is a bfs as well as

an extreme point, of the LP relaxation, and thus is the one with

the desired properties. Introducing a new slack variable xk for the

cut (‡), a new equality constraint is added to the LP-relaxation

subproblem, namely

−
∑

(aij − ⌊aij⌋)xj + xk = −(bi − ⌊bi⌋), and xk ≥ 0.

Step 3. Since the added constraint has a negative rhs, we

use the dual Simplex method to find an optimal solution to the

modified LP relaxation subproblem (with the cut as an additional

constraint). If all variables assume integer values in the optimal

solution yielded, we have found an optimal solution to the IP.

Otherwise, pick the constraint whose rhs has the fractional part

closest to 1

2
and use it to generate another cut, which is to be

added to the current optimal tableau. We continue this process

until we obtain a solution in which all variables are integers, i.e.

an optimal solution to the given IP.

Example 6. Solve the following IP problem using the cutting-

plane algorithm.
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max z = 8x1 + 5x2

s.t. x1 + x2 ≤ 6

9x1 + 5x2 ≤ 45

x1, x2 ≥ 0 and integer.

Solution. Slack variables s1 and s2, are added to generate the

standard form

max z = 8x1 + 5x2

s.t. x1 + x2 + s1 = 6

9x1 + 5x2 + s2 = 45

x1, x2, s1, s2 ≥ 0 and integer.

Applying the Simplex method gives the optimal Simplex tableau

below.

basis x1 x2 s1 s2 rhs

z 0 0 1.25 0.75 41.25

x2 0 1 2.25 -0.25 2.25

x1 1 0 -1.25 0.25 3.75

To apply the cutting plane method, we begin by choosing any

constraint in the LP-relaxation optimal tableau in which the basic

variable is fractional. As both basic variables are equally close to

an integer value plus 1

2
, we can arbitrarily choose either to perform

the cutting. Here we select the second constraint and rewrite it

by taking all decimal parts to rhs

x1 − 1.25s1 + 0.25s2 = 3.75
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⇒ x1 − 2s1 + 0s2 − 3 = 0.75− 0.75s1 − 0.25s2.

So, the cut to be added to the LP-relaxation subproblem is

0.75− 0.75s1 − 0.25s2 ≤ 0

Notice that the optimal solution to the current LP relaxation with

s1 = s2 = 0 does not satisfy this constraint. Adding a new slack

variable s3 to the cut, we obtain a new equality constraint:

−0.75s1 − 0.25s2 + s3 = −0.75

Now add this row to the final tableau of the LP relaxation with

an extra basic variable s3 and one pivot column for it. Since the

rhs of the new constraint is negative, the infeasibility is incurred.

To continue solving the problem, the dual Simplex method shall

be applied.

basis x1 x2 s1 s2 s3 rhs

z 0 0 1.25 0.75 0 41.25

x2 0 1 2.25 -0.25 0 2.25

x1 1 0 -1.25 0.25 0 3.75

s3 0 0 -0.75 -0.25 1 -0.75

z 0 0 0 0.33 1.67 40

x2 0 1 0 -1 3 0

x1 1 0 0 0.67 -1.67 5

s1 0 0 1 0.33 -1.33 1

One-step dual Simplex procedure gives an optimal solution

(x1, x2) = (5, 0)T , which is an integer solution. So it is an optimal

solution to the original IP, with zmax = 40.
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Example 7. Solve the following IP problem using the cutting-

plane algorithm.

max z = 7x1 + 9x2

s.t. −x1 + 3x2 ≤ 6

7x1 + x2 ≤ 35

x1, x2 ≥ 0 and integer.

Solution. Slack variables s1 and s2, are added to generate the

standard form. The Simplex method gives an optimal tableau

below.

basis x1 x2 s1 s2 rhs

z 0 0 28

11

15

11
63

x2 0 1 7

22

1

22

7

2

x1 1 0 - 1

22

3

22

9

2

As both basic variables are equally close to an integer value

plus 1

2
, we can arbitrarily choose either to perform the cutting.

Here we select the first constraint

x2 +
7

22
s1 +

1

22
s2 =

7

2

⇒ x2 + 0s1 + 0s2 − 3 =
1

2
−

7

22
s1 −

1

22
s2.

So, the cut to be added to the original IP is

1

2
−

7

22
s1 −

1

22
s2 ≤ 0
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Adding a new slack variable s3 to the cut, we obtain a new equality

constraint:

−
7

22
s1 −

1

22
s2 + s3 = −

1

2
This row now is added to the final tableau of the LP relaxation

with an extra basic variable s3 and one pivot column for it. Since

the rhs of the new constraint is negative, the infeasibility is intro-

duced. To continue solving the problem, the dual Simplex method

shall be applied.

basis x1 x2 s1 s2 s3 rhs

z 0 0 28

11

15

11
0 63

x2 0 1 7

22

1

22
0 7

2

x1 1 0 - 1

22

3

22
0 9

2

s3 1 0 - 7

22
- 1

22
1 -1

2

z 0 0 0 1 8 59

x2 0 1 0 0 1 3

x1 1 0 0 1

7
-1
7

32

7

s1 0 0 1 1

7
−22

7

11

7

As the value of x1 is not an integer, we need to add another

cut

−
1

7
s2 −

6

7
s3 + s4 = −

4

7
to the above LP relaxation. This gives
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basis x1 x2 s1 s2 s3 s4 rhs

z 0 0 0 1 8 0 59

x2 0 1 0 0 1 0 3

x1 1 0 0 1

7
-1
7

0 32

7

s1 0 0 1 1

7
−22

7
0 11

7

s4 0 0 0 −1

7
−6

7
1 −4

7

z 0 0 0 0 2 7 55

x2 0 1 0 0 1 0 3

x1 1 0 0 0 -1 1 4

s1 0 0 1 0 -4 1 1

s2 0 0 0 1 6 -7 4

So, an optimal solution (x1, x2) = (4, 3)T with zmax = 55 is

obtained for the original IP.

Cutting planes were proposed by Ralph Edward Gomory, an Amer-

ican applied mathematician, in the 1950s as a method for solving

pure and mixed IP problems. However, most experts, including

Gomory himself, considered them to be impractical due to numer-

ical instability, as well as ineffectiveness because many rounds of

cuts are needed to make progress towards the solution. Things

turned around when in the mid-1990s Cornuejols and co-workers

showed them to be very effective in combination with branch-and-

cut and other ways to overcome numerical instabilities.

Further reading: Section 9.6 and 9.8 in the reference book “Operations Research:
Applications and Algorithms” (Winston, 2004)
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