Lecture Notes — Part 11

Integer Programming (II)

3 Combinatorial Optimisation Problems (cont.)

3.3 Travelling Salesman Problem (TSP)

The problem can simply be stated as follows. If a travelling sales-
man, who starts from the home city, wishes to visit exactly once

each of a list of m cities, where the cost of travelling from city ¢
jj?
costly route the travelling salesman can take?

A binary IP for the TSP might be formulated as below. Firstly,

set up the cost matrix C by

Cij:{c;;-, it i #

M, otherwise,

to city 7 is ¢}., and then return to his home city, what is the least

where M is an extremely large positive number.

Foreach?=1,...,m and each j =1,...,m, let

1, if the salesman leaves city ¢ and travel next to city j;
e
Y 0, otherwise.

Then the binary IP could be shown as follows



min z = 221 2211 CijLij

s.t. Z;nzl ri; = 1l,i=1,...,m,
Yiry = Lj=1...,m,
x;; = 0or 1.

The first m constraints ensure that the salesman leaves each city
exactly one time. The last m ensure that the salesman visits each
city just one time.

You may have noticed that it is exactly an IP model of the as-
signment problem. However, utilising the solution approach like
Hungarian method alone for the above binary IP could result in
separate cycles such that a single route cannot be generated. Ac-
tually, the above IP formulation for TSP hasn’t yet been finished.

To prevent separate cycles in TSP, we need
e add some additional constraints to the above binary IP, or
e use the B&B method which we are going to demonstrate.

Example 5. Noah Syndergaard lives in Gary, Indiana. He owns
insurance agencies in Gary, Fort Wayne, Evansville, Terre Haute,
and South Bend. Each December, he visits each of his insurance
agencies. The distance between each agency (in miles) is:



City 1 City 2 City 3 City 4 City 5

(GA) (FW) (EV) (TH) (SB)
City 1 (GA) 0 132 217 164 58
City 2 (FW) | 132 0 200 201 79
City 3 (EV) | 217 290 0 113 303
City 4 (TH) | 164 201 113 0 196
City 5 (SB) 58 79 303 196 0

What order of visiting his agencies will minimise the total distance

travelled?

Solution. We apply the B&B method to solve this TSP.

Take a large positive number M, say M = 10000. The cost matrix

of the problem is

SubP1 | City 1 City 2 City 3 City 4 City 5
City 1 M 132 217 164 58
City 2 132 M 290 201 79
City 3 217 290 M 113 303
City 4 164 201 113 M 196
City 5 58 79 303 196 M

Subproblem 1. For eachi=1,...,5 and each j =1,...,5, let

{ 1, if the Noah leaves city ¢ and then travel to city j;
CL’Z']' =

0, otherwise.

The assignment-problem binary IP is
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min z = Z?zl 25:1 CijLij

s.t. SO qwy = 1li=1,..5
Z?zlxij - 17j:17"'757
x;; = 0or 1.

Applying the Hungarian method to the cost matrix of the above
binary IP model, which is an assignment problem, we obtain an
optimal solution x15 = x50 = X917 = 34 = 143 = 1 with z;, = 495.
This solution contains two subtours (1-5-2-1) and (3-4-3) and can-
not be an optimal solution to the considered TSP. We will elim-
inate these subtours by branching Subproblem 1. We choose to
exclude the subtour (3-4-3). This can be done by setting either
x34 = 0 or x43 = 0. In other words, we branch on Subproblem
1 by adding each of these conditions. This yields following two

subproblems:

e Subproblem 2 = Subproblem 1 + (x34 = 0 by setting ¢34y =
M), and

e Subproblem 3 = Subproblem 1 + (243 = 0 by setting c43 =

We now arbitrarily choose Subproblem 2 to solve. The table
“SubP2” is the cost matrix for Subproblem 2.



SubP2 | City 1 City 2 City 3 City 4 City 5
City 1 M 132 217 164 58
City 2 132 M 290 201 79
City 3 217 290 M 303
City 4 164 201 113 M 196
City 5 58 79 303 196 M

Applying the Hungarian method to this cost matrix, we obtain an
optimal solution x14 = 243 = x31 = T95 = r52 = 1 with z;, = 652.
This solution contains two subtours (1-4-3-1) and (2-5-2) and
again cannot be an optimal solution. We will eliminate these
subtours by branching Subproblem 2. We choose to exclude the
subtour (2-5-2). This can be done by setting either z95 = 0 or
x50 = 0. In other words, we branch on Subproblem 2 by adding
each of these conditions. This yields following two subproblems:

e Subproblem 4 = Subproblem 2 + (295 = 0 by setting co5 =
M), and

e Subproblem 5 = Subproblem 2 + (x52 = 0 by setting c52 =

We now arbitrarily choose Subproblem 4 to solve. The table
“SubP4” below is the cost matrix for Subproblem 4.



SubP4 | City 1 City 2 City 3 City 4 City 5
City 1 M 132 217 164 58
City 2 132 M 290 201
City 3 217 290 M M 303
City 4 164 201 113 M 196
City 5 58 79 303 196 M

Applying the Hungarian method to this cost matrix yields an
optimal solution x5 = x50 = X9y = w43 = 231 = 1 with 2z, =
668. Now this solution contains no subtours and yields a single
route (1-5-2-4-3-1). Thus, Subproblem 4 produces a candidate for
optimal solution and an upper bound: Any subproblem that has
its objective value no less than U B = 668 will be eliminated from
consideration.

We now solve Subproblem 5. Its cost matrix is

SubP5 | City 1 City 2 City 3 City 4 City 5

City 1 M 132 217 164 58
City 2 132 M 290 201 79
City 3 217 290 M M 303
City 4 164 201 113 M 196
City 5 58 303 196 M

Applying the Hungarian method to this cost matrix we obtain
an optimal solution x4 = 243 = 393 = T95 = x5 = 1. This



solution is a tour, but zn;, = 704 > UB = 668. Thus Subproblem
5 is eliminated from consideration.

Other subproblems can be solved similarly. Below is the branching
tree diagram of the T'SP.
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So an optimal solution to the considered TSP is x15 = x50 = 194 =

43 = T31 = 1 with 2z, = 668, obtained at Subproblem 4.



TSP belongs in the class of combinatorial optimisation prob-
lems known as NP-complete. Specifically, if one can find an ef-
ficient algorithm (i.e., an algorithm that is guaranteed to find
an optimal solution in a polynomial number of steps) for any
NP-complete problem, then efficient algorithms exist for all other
problems in the NP-complete class. To date, however, no polynomial-
time algorithm for any NP-complete problem has been proved.

4 The Cutting Plane Algorithm

Similar to B&B methods, the cutting plane methods for pure or
mixed IPs work by solving the LP relaxation of the given IP. The
theory of LP dictates that under mild assumptions (if at least
an optimal solution exists) one can always find an extreme point
or a corner point that is optimal. The obtained optimum to LP
relaxation is tested for being an integer solution. If not, it is
guaranteed that there exists a linear inequality separating this
non-integer optimum from the feasible set of the given IP. To do
the separation, we find such an inequality which is called a cut. A
cut can be added to the LP relaxation to generate an LP relation
with a shrunk feasible region. Then, the current non-integer opti-
mal solution is no longer feasible to the cut LP relaxation, which
is a new LP relaxation subproblem. This process is repeated until
an optimal solution with integer values is found.



Consider an IP problem in standard form

max (or min) z = c’x

s.t. Ax = b

X > 0 and integer.

The cutting plane method proceeds by first dropping the re-
quirement that decision variables x be integers and solving the
associated LP-relaxation problem. Geometrically, the optimal so-
lution to the LP relaxation, which is a bfs, is a vertex of the convex
polygon consisting of all feasible points for the LP relaxation. If
the optimal-solution vertex is not an integer point, then we find
a hyperplane such that the vertex is located on one side and all
the feasible integer point(s) are on the other side. It is then intro-
duced as an additional linear constraint to exclude the vertex, and
a modified LP relaxation subproblem is generated. The generated
LP subproblem is then solved and the process is repeated until an
integer optimal solution is found.

Step 1. Using the Simplex method to solve an LP relaxation
subproblem produces a set of equations of the form

it Y aa; = b, (1)
j

where x; is a basic variable, the x;’s are the nonbasic variables,
a;;’s are the constraint coefficients in the final optimal tableau,

and b; is the rhs in the final optimal tableau.
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Step 2. Pick a constraint (i.e. a row) in the final optimal

tableau whose rhs is not an integer, i.e. b; — |b;] > 0.* This
constraint will be used to generate a cut. Assume that the ‘"
constraint has been picked. Rewrite this equation (}) so that the
terms with integer coefficients are on the left side and the terms
with fractional coefficients are on the right side:

Ti + ZL%J:UJ' — |bi) = (0 = [B:]) = > (@ — @)z,

J

Since the above equation stems from the equation (1), all feasible
solutions to the current LP relaxation subproblem satisfy it. Also,
since b; — |b;| < 1, @;; — |@;;] > 0, and x; > 0, the right side of
this equation is strictly less than 1. Hence, for any integer point
(i.e. z;, x;’s are integers) in the feasible region, the left side of
this equation is integer and thus the right side of this equation is
less than or equal to 0. So the inequality

(bi — [bi]) — Z(aij — |@;])z; <0 (1)
J
must hold for any integer point in the feasible region. We add
inequality (1) as a new constraint into the current LP relaxation
subproblem. It is called the cut. Note that

e any feasible integer point for the current LP relaxation sub-
problem, i.e. any integer solution to the original IP, satisfies
the cut, and

*In practice, a constraint in the LP relaxation’s optimal tableau whose rhs has the
fractional part closest to % would be picked.

11



e the optimal solution to the LP relaxation subproblem, which
is not an integer solution with non-integer b;, does not sat-
isfy the cut since all nonbasic variables z; = 0 and hence the

inequality () becomes

bi — |b;] <0, which is impossible since b; — |b;] > 0.

So this cut excludes the optimal solution, which is a bfs as well as
an extreme point, of the LP relaxation, and thus is the one with
the desired properties. Introducing a new slack variable x for the
cut (1), a new equality constraint is added to the LP-relaxation

subproblem, namely

=S (@ — ag))xs +wp = —(b; — (b)), and a5, > 0.

Step 3. Since the added constraint has a negative rhs, we

use the dual Simplex method to find an optimal solution to the
modified LP relaxation subproblem (with the cut as an additional
constraint). If all variables assume integer values in the optimal
solution yielded, we have found an optimal solution to the IP.
Otherwise, pick the constraint whose rhs has the fractional part
closest to % and use it to generate another cut, which is to be
added to the current optimal tableau. We continue this process
until we obtain a solution in which all variables are integers, i.e.

an optimal solution to the given IP.

Example 6. Solve the following IP problem using the cutting-
plane algorithm.
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max z = &x1+ bzo

s.t. rT1+1x9 < 0
91 4+ dry < 45
xr1, xo > 0 and integer.

Solution. Slack variables s; and so, are added to generate the

standard form

max z = 8x1+ dxg
st. 1+ w9+ 81 = 6
9$1 + 5372 -+ S9 = 45

xr1, T2,81, s2 > 0 and integer.

Applying the Simplex method gives the optimal Simplex tableau

below.

basis | 1 9 $1 S9 rhs
z 0 0 1.25 0.75 | 41.25
T 0 1 225 -0.25| 2.25
1 1 0 -1.25 0.25]| 3.75

To apply the cutting plane method, we begin by choosing any
constraint in the LP-relaxation optimal tableau in which the basic
variable is fractional. As both basic variables are equally close to
an integer value plus %, we can arbitrarily choose either to perform
the cutting. Here we select the second constraint and rewrite it

by taking all decimal parts to rhs

r1 — 1.2581 + 0.25s89 = 3.75
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= 21 —281+0s9 —3=0.75—0.75s1 — 0.25s9.
So, the cut to be added to the LP-relaxation subproblem is

0.75 = 0.7551 — 0.2552 < 0

Notice that the optimal solution to the current LP relaxation with
s1 = 89 = 0 does not satisfy this constraint. Adding a new slack
variable s3 to the cut, we obtain a new equality constraint:

—0.75s1 — 0.25s9 + s3 = —0.75

Now add this row to the final tableau of the LP relaxation with
an extra basic variable s3 and one pivot column for it. Since the
rhs of the new constraint is negative, the infeasibility is incurred.
To continue solving the problem, the dual Simplex method shall

be applied.

basis | 1 X9 S1 S9 S3 rhs
z 0 0 1.25  0.75 0 [41.25
Ty 0 1 225 -025 0 2.25
1 1 0 -125 0.25 0 3.75
s3 | 0 0 025 1 |-0.75
z 0 0 0 0.33 1.67 40
T 0 1 0 -1
1 1 0 0 0.67 -1.67
51 0 0 1 0.33 -1.33

One-step dual Simplex procedure gives an optimal solution
(z1, x2) = (5, 0)T, which is an integer solution. So it is an optimal
solution to the original IP, with 2., = 40.
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Example 7. Solve the following IP problem using the cutting-

plane algorithm.

max 2= T7x1+ 919
st. —x1+3r2 < 6
7371 + X9 S 35

xr1, ro > 0 and integer.

Solution. Slack variables s; and so, are added to generate the

standard form. The Simplex method gives an optimal tableau

below.
basis| 1 x93 S  S9 | rhs
= |0 0 23 1) 43
w0 1 % & 3
|10 -5 2 2

As both basic variables are equally close to an integer value
1

plus 5, we can arbitrarily choose either to perform the cutting.
Here we select the first constraint

$2+ﬁ81+582:§

1 7 1
= 0 0sg —3 == — —51 — —So.
T2 + Us1 + Us9 5 2281 2282
So, the cut to be added to the original IP is
1 7 1 <0
2 27T M=
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Adding a new slack variable s3 to the cut, we obtain a new equality
constraint:
7 1 1

—551 — 552 —+ S3 = —5

This row now is added to the final tableau of the LP relaxation
with an extra basic variable s3 and one pivot column for it. Since
the rhs of the new constraint is negative, the infeasibility is intro-
duced. To continue solving the problem, the dual Simplex method
shall be applied.

basis | 1 X2 S Sy S3 | rhs
=z [0 0o 2 B 0| 63
s | 0 1 L & 0 I
|10 5 &0 2
ss | 10 -5 5 1| -3
=z |0 0 0 1 8 | 59
x| 0 1 0 0 1 3
x| 10 0 1 4| 2
ss |0 0o 1 1 -2z U

As the value of x1 is not an integer, we need to add another

cut
1 6.,
—=8S9 — =83+ 854 = —¢
772 T 7

to the above LP relaxation. This gives

16



basis | 1 9 S S9 s3  S4 | rhs
z 0 0 0 1 8 0 59
9 0 1 0 0 1 0 3
xn |10 0 1+ 4 0| 2
ss |0 0 1 1 -2 0] &
ss | 0 0 0 |-3 =% 1| -2
z 0 0 0 0 2 7 55
T2 0 1 0 0 1 0 3
1 1 0 0 0 -1 1 4
51 0 0 1 0 -4 1 1
59 0 0 0 1 6 -7 4

So, an optimal solution (z1, x2) = (4, 3)T with 2pa = 55 is
obtained for the original IP.
Cutting planes were proposed by Ralph Edward Gomory, an Amer-
ican applied mathematician, in the 1950s as a method for solving
pure and mixed IP problems. However, most experts, including
Gomory himself, considered them to be impractical due to numer-
ical instability, as well as ineffectiveness because many rounds of
cuts are needed to make progress towards the solution. Things
turned around when in the mid-1990s Cornuejols and co-workers
showed them to be very effective in combination with branch-and-

cut and other ways to overcome numerical instabilities.

Further reading: Section 9.6 and 9.8 in the reference book “Operations Research:
Applications and Algorithms” (Winston, 2004)
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