
Lecture Notes – Part 2

Linear Programming: Basics 

1 Introduction to Linear Programming

In the end of Chapter 1, we saw how to solve two-variable LP problems 
graphically. Unfortunately, most real-life LPs have many variables, so a 
technique is needed to solve LPs with more than two variables.
Consider an optimisation problem

min (or max) z = f(x)
s.t. g(x) ≥ (or mixed with ≤, =) 0

x ≥ (or mixed with ≤, urs) 0

If the objective function f(x) and all of the constraints g(x) are linear,
then the considered optimisation problem is an LP, which can be widely found
and used in industry. The formulation shown above is called the general form
of an LP. It can have both inequality and equality constraints, and also can
have variables that are required to be nonnegative/non-positive as well as
those allowed to be unrestricted in sign (urs).

It is possible that there will be a set of constraints that never can be
simultaneously satisfied, in which case no feasible solution exists to the LP.
Hence, there is no optimal solution to the LP.1

It is also possible that the feasible set/region is open or unrestricted
in some direction. If this happens, an optimal solution may not be yielded
to the LP, which is called unbounded (possible but not guaranteed, depending
on the objective function).2 For example, consider the following LP

min z = −2x1 − 3x2

s.t. x1 + x2 ≥ 3
x1, x2 ≥ 0

1cf. Case 1 at p.10 in Lecture Note Part 1
2cf. Case 4 at p.10 in Lecture Note Part 1
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This LP is unbounded. Both decision variables x1 and x2 can be made as
large as we wish, giving an objective function value below any bound (loosely,
the objective function value heads to −∞).

However, consider another LP with the same constraints

min z = 2x1 + 3x2

s.t. x1 + x2 ≥ 3
x1, x2 ≥ 0

This LP is not unbounded, and does have an optimal solution. This is
because the feasible region is unrestricted in some direction, which is not the
moving direction of the iso-cost line.

Before introducing another LP format called “standard” form, we first
describe two conversion processes.

1.1 Nonnegativity of Decision Variables

Although in most practical situations the decision variables, e.g. the number
of cars produced, quantity of raw material used, etc, are usually required to be
nonnegative, some urs variables could exist in an LP. In solving LPs with the
Simplex method, we will need to perform a value examination called “ratio
test”, which depends on the condition that any feasible solution requires all
variables to be nonnegative. Thus, if some variables are allowed to be urs,
the ratio test and therefore the Simplex algorithm are no longer valid.

Here the conversion of urs variables to nonnegative variables is introduced.
Any variable not already constrained to be nonnegative (by the nature of the
problem) can be converted to the difference of two new nonnegative variables.
For example, decision variables x1 and x2 in the following LP are urs:

min z = 25x1 + 30x2

s.t. 4x1 + 7x2 ≥ 1
8x1 + 5x2 ≥ 3
6x1 + 9x2 ≥ −2

x1, x2 urs

Since a real number can be written as the difference between two non-
negative numbers, we can convert this problem to an equivalent one with
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nonnegative decision variables by introducing four new nonnegative decision
variables p1, q1, p2 and q2, such that

x1 = p1 − q1
x2 = p2 − q2

Then we have an equivalent LP as follows:

min z = 25p1 − 25q1 + 30p2 − 30q2
s.t. 4p1 − 4q1 + 7p2 − 7q2 ≥ 1

8p1 − 8q1 + 5p2 − 5q2 ≥ 3
6p1 − 6q1 + 9p2 − 9q2 ≥ −2

p1, q1, p2, q2 ≥ 0

1.2 Slack and Surplus Variables and the Matrix Form

for Linear Constraints

In order to use the techniques for the solution of the system of equations,
it is necessary to convert the inequality constraints of an LP into equality
constraints.

We can convert any inequality constraint into an equality constraint by
adding slack or surplus variables as appropriate. These variables are defined
to be nonnegative. For example, the constraints

x1 − 2x2 ≤ 3
x1, x2 ≥ 0

is equivalent to

x1 − 2x2 + s1 = 3
x1, x2, s1 ≥ 0

The variable s1 is referred to as a slack variable. It results from the fact
that, in order for the smaller left-hand-side (lhs) to equal the right-hand-
side (rhs), some nonnegative value must be added to the lhs. Similarly, the
constraints
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2x1 + x2 ≥ 3
x1, x2 ≥ 0

is equivalent to

2x1 + x2 − e1 = 3
x1, x2, e1 ≥ 0

The variable e1 is referred to as a surplus (or excess) variable. As the
lhs is bigger, some nonnegative value must be subtracted from it to achieve
equality.

Hence, the system of constraints in any LP, regardless of the direction of
the inequality, can be rearranged in the form:

a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

...
am1x1 + am2x2 + · · ·+ amnxn = bm

or, equivalently




a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn







x1

x2

·
·
·
xn




=




b1
b2
...
bm




or even more briefly as Ax = b.

It is usual that we have more variables than constraints, i.e. n > m. 
Besides, the built constraints normally shall be consistent (i.e. a row of the 
form [0 0 · · · 0 | c] with c 6= 0 does not exist after applying Gaussian-Jordan 
elimination); otherwise, there exists no feasible solution. In fact, if we have 
n > m and consistent constraints, then there will be an infinite number of 
feasible solutions. In other words, the system of linear equations has n − m 
degrees of freedom. This means that it is possible to find the “best” solution 
from those feasible ones with regard to the objective function, i.e. an optimal 
solution. And it makes sense to consider “optimisation” for the problems of 
this type.
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1.3 The Standard Form of an LP

Before the Simplex algorithm can be used to solve an LP, the LP must be
converted into an equivalent problem in which all constraints are equations
and all variables are nonnegative. An LP in this form with nonnegative rhs is
said to be in standard form. Any LP in general form can be transformed into
an equivalent LP in standard form using the two fore-introduced conversion
techniques, as shown below:

max (or min) z = c1x1 + c2x2 + · · ·+ cnxn

s.t. a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

...
am1x1 + am2x2 + · · ·+ amnxn = bm
x1, x2, · · · , xn ≥ 0

where bi ≥ 0 for i = 1, 2, · · · , m.
Converting to the standard form can be done as follows:

• You can choose whether you want to maximise or minimise the ob-
jective function, or leave the objective as it is. If the problem is in
minimisation (or maximisation) sense, multiply it by −1 to convert the
objective to a maximisation (or minimisation) one.

• Convert any inequality to an equality constraint by the addition of
slack or surplus variables (as appropriate).

• If any rhs bi is negative, multiply the whole constraint by −1.

• Any urs xj can be replaced by two nonnegative variables x′
j and x′′

j :
xj = x′

j − x′′
j .

In matrix format, an LP in standard form can be written as

max (or min) z = cTx

s.t. Ax = b

x ≥ 0

where x and c are n-dimensional vectors, A is an m× n matrix, and b is an
m-dimensional vector. Note that b ≥ 0.
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1.4 Fundamental Law of LP

Convex set: A set S in n-dimensional space is said convex if whenever any
two points x1 and x2 belong to S so does every point of the line segment
connecting x1 and x2. In other words, a set S is a convex set if the line
segment joining any pair of points in S is wholly contained in S.

Closed half-space: Given an n-dimensional row vector a and a constant b,
the set of all vectors (i.e. points) x in n-dimensional space satisfying ax ≤ b

is called a closed half-space. The set of vectors for which ax = b is called the
boundary of the closed half-space.

Extreme point: Given a convex set S of n-dimensional vectors, a point x∗

is called an extreme point (or corner point) of S if there do not exist any two
points x1 and x2 in S and any value α ∈ (0, 1), such that

x∗ = αx1 + (1− α)x2.

In other words, for any convex set S, a point x∗ in S is an extreme point if
each line segment that lies completely in S and contains the point x∗ has x∗

as an endpoint of the line segment.

Lemma 1 Every closed half-space is a convex set.

Suppose that x1 and x2 lie in a closed half-space consisting of points
which satisfy ax ≤ b. Let x3 be any point on the line segment between x1

and x2. Then we have ax1 ≤ b, ax2 ≤ b, and x3 = αx1 + (1− α)x2 for some
α ∈ [0, 1].
So it can be shown that

ax3 = a
(
αx1 + (1− α)x2

)
= αax1 + (1− α)ax2 ≤ αb+ (1− α)b = b,

which means x3 also lies in the considered closed half-space.

Lemma 2 The intersection of any collection of convex sets is convex.

Let x1 and x2 be any two points in the intersection. Then x1 and x2

belong to each convex set of the collection. Each convex set contains the line
segment between x1 and x2. Thus, the line segment belongs to each convex
set in the collection so that it belongs to the intersection.

Each feasible set of an LP, if it exists, consists of all vectors that simulta-
neously satisfy a finite number of linear constraints. Each constraint defines
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a closed half-space. Thus the feasible set is the intersection of a finite number
of closed half-spaces, each of which is convex as per Lemma 1. Lemma 2 then
gives us the following theorem.

Theorem 1 The feasible set of an LP, if not infeasible, is a convex set.

Since the LP feasible region is a convex set constructed by a finite number
of closed half-space boundaries, it is a polyhedron with a finite number of
sides (and therefore vertices). Then we have the following theorem.

Theorem 2 The feasible region for any LP has a finite number of extreme

points.

Theorem 3 If the feasible set is non-empty and one optimal solution exists

to the LP, then there is an optimal solution at one of the extreme points.

To see this, consider an optimal solution x∗ to a minimisation LP ex-
isting on the boundary of the feasible region.3 Due to the linearity of the
constraints, the feasible region is actually a convex polyhedron. Suppose that
x∗ is not an extreme point. Then, from the definition of extreme point, there
must be two other points x1 and x2 in the feasible region, which is convex,
and a value α, 0 < α < 1, such that x∗ = αx1 + (1− α)x2. Since x∗ on the
boundary, i.e. some face of the convex polyhedron, it is obvious that x1 and
x2 are on the same face as well.

Since x∗ is an optimal solution, so cTx∗ ≤ cTx1 and cTx∗ ≤ cTx2.
Hence

cTx∗ = cT (αx1 + (1− α)x2) = αcTx1 + (1− α)cTx2

≥ αcTx∗ + (1− α)cTx∗ = cTx∗

The only situation that the above derivation can be satisfied is cTx1 =
cTx2 = cTx∗, which means that x1 and x2 are both optimal solutions as
well. Repeating the above argument for optimal solution x1 or x2, we can
get an optimal solution existing on the edge of the convex polyhedron. Then
we can repeat the process until we find an corner point, i.e. extreme point,
giving the same objective value and thus being optimal.

3It is obvious that we can find an optimal solution x∗ on the boundary due to the
linearity of the objective function.
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1.5 Basic Feasible Solutions

1.5.1 Definition

Considering an LP in standard form, we have the following system of con-
straints

Ax = b (1)
x ≥ 0 (2)

with n variables and m constraints, where n > m. Suppose that the feasible
region exists and there are an infinite number of solutions. How can we find
a solution?

One intuitive approach is to set n − m components of x equal to zeros.
If the columns in A corresponding to the remaining m variables are linearly
independent, solving for the values of these m variables will yield a unique
solution. A solution produced by the unique values for the m variables cou-
pled with the zeros for the other n−m variables is called a basic solution.

Assume without loss of generality that we take the first m components4 and
call them basic variables. The vector constructed with them is named basis

and denoted by xB (B is for basic). Then denote the vector of the remaining
n −m components, i.e. nonbasic variables, by xN, which is called nonbasis

(N is for nonbasic). By setting xN = 0, we ensure that we have the same
number of unknowns as that of equations, and open up the possibility of
yielding a unique solution

(x1, x2, · · · , xn) = (xT
B
|xT

N
).

The first m columns, associated with the basic variables, of A can be
labeled B and the last n−m columns N. Since A = [B|N], Eq. (1) can be
written as

BxB +NxN = b.

By setting xN = 0, we get
BxB = b.

4The numbering in the subscripts of the variables is entirely arbitrary so that basic
variables may not always be the “first” m components.
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If it can be assumed that the columns of B are linearly independent, then
we have a unique solution

xB = B−1b.

Then we say that the variables in xB are in the basis, and that xT = (xT
B
|0)

is a basic solution. If Eq. (2) is satisfied, i.e. xB = B−1b ≥ 0, then we call
it a basic feasible solution (bfs). A bfs exactly represents an extreme point
of the considered LP feasible region.

And the objective value of the bfs is

z = cTx = cT
B
xB + cT

N
xN

= cT
B
B−1b.

Obviously, we could swap the order of the variables (and correspondingly,
the columns of matrix A), and choose any m variables to be in the basis.
Thus, there can be a huge number of possible choices, so we have many
possible bases.

We can rewrite Theorem 3 as:

Theorem 4 If the feasible set is non-empty and one optimal solution

exists to the LP, then there is a basic feasible solution giving the optimal

value.

Consider the following LP for example,

min z = x1 + x2

s.t. 2x1 + 5x2 ≤ 7
x1 + 8x2 ≤ 4

x1, x2 ≥ 0

Its standard form is

min z = x1 + x2

s.t. 2x1 + 5x2 + s1 = 7
x1 + 8x2 + s2 = 4

x1, x2 s1, s2 ≥ 0

A bfs is (x1, x2, s1, s2) = (0, 0, 7, 4) with z = 0.
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1.5.2 Degeneracy

It is possible that more than one bfs represents the same extreme point of the
feasible set. This is known as degeneracy, which would cause the inefficiency
of the Simplex method for solving an LP.

Another feature of a degenerate bfs is that some of the elements of xB

are equal to 0s (along with xN = 0).
We will look at degeneracy again later on.
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