
1 Introduction to the Simplex Method

1.1 Background

The Simplex method was devised in 1947 by George Dantzig. It was a 
remarkably successful technique for solving LPs, and no other solution ap-
proach was really considered until the 1980s when interior point methods 
were devised. This sparked new interest in improving implementations of 
the Simplex method and today, on most problems, its modified variant is 
approximately as quick as the best interior point methods.

2.2 Simplex Algorithm Procedure

The Simplex method uses the optimality criterion (cf. Step 2 below) to per-
form an efficient search of the extreme points (i.e. bfs) of the feasible region. 
The method usually starts from the bfs where all original decision variables 
are zeros. Then it “greedily” (in the sense that the objective function value is 
getting improved) moves from one extreme point (i.e. bfs) of the feasible re-
gion to an adjacent bfs5 by changing one basic variable at a time. Intuitively, 
two bfs are adjacent if they both lie on the same edge of the boundary of the 
feasible region. In the searching/moving procedure, the feasibility criterion 
(cf. Step 3 below), which is a ratio test, ensures that the basic solution in 
each iteration remains feasible (i.e. satisfies all constraints). The method 
ceases when no further improvement in the value of the objective function

5For any LP with m constraints, two bfs are said to be “adjacent” if their bases have
m− 1 basic variables in common.
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can be obtained, and an optimal solution, if it exists, is exactly the most
recent bfs, i.e. the current bfs. The method is outlined below:

Step 1: (Preprocessing – Initial bfs) Convert the LP to standard form.
Check whether the system of linear equations is in canonical form where
each equation has a variable with a coefficient of 1 in that equation and zero
coefficients in all other equations. If this is the case and the rhs of each
equation in the canonical form is nonnegative, an initial bfs can be obtained
by inspection, i.e. a basis which is feasible can be constructed by those
variables with a coefficient of 1 in one equation and a zero coefficient in any
other equation. Then generate an initial Simplex tableau from the objective
and equations written in canonical form. Following the notation in the text
(Winston, 2004), the objective function row, also called the reduced cost row
or row 0, is constructed by moving the rhs variable terms of the objective,
i.e. cTx to the lhs (so the constant term, usually 0, will be on the rhs).6

The reason why we move all the variable terms to the lhs for the objective
function row is obvious. To get a Simplex tableau with consistent columns,
we shall let all the variables stay on the lhs as the system of constraints
Ax = b. Thus, we shall have row 0 as z − cTx = 0 instead of z = cTx.

Step 2: (Entering) For a maximisation LP, if there is no negative number
in the row 0 (the objective function row), then STOP – the current bfs
is optimal. Otherwise, select a nonbasic variable with the most negative
number (which is called reduced cost) in row 0 to be the entering variable

xt, which will become basic variable after iteration. For minimisation, if
there is no positive entry in row 0, then STOP – the current bfs is optimal.
Otherwise, select a nonbasic variable with the largest positive reduced cost
as the entering variable.

Step 3: (Leaving – Ratio Test) Let b̂ = (̂b1, b̂2, · · · , b̂m)
T be the right-

most column, which is called “column rhs”, and let Ât = (â1t, â2t, · · · , âmt)
T

be the column vector corresponding to the entering variable xt. Find an
index

6In the representation of the Simplex tableau in the text, an additional column is added
to the tableau. This column has the same entries regardless of the row operations, a 1
followed by 0s. Hence, in most representations this column can be omitted. This will be
the case in our lecture notes.
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s = arg min
1≤i≤m

{ b̂i

âit
: âit > 0

}

i.e. find the smallest “positive” ratio formed by the divisor of column rhs and
the entering-variable column. The basic variable with the smallest positive
ratio is the leaving variable, i.e. if

min
1≤i≤m

{ b̂i

âit
: âit > 0

}
=

b̂s

âst

then xs is the leaving variable.
If âit ≤ 0 for all i = 1, 2, · · · , m, then STOP – the problem is unbounded.

Step 4: (Pivoting) Update the tableau by pivoting on ast, i.e. perform
EROs on the tableau to get a 1 in the pivot position, and 0s above and below
it.7 Recall that the pivot is the intersection of the entering-variable column
and the leaving-variable row. By doing this, you are solving the system of
linear equations with the updated nonbasic variables being set zeros. This
tableau then yields the new bfs. The process then returns to Step 2 to
commence the next iteration, if necessary.

An n-variable, m-constraint LP can have at most
(
n

m

)
= n!

m!(n−m)!
basic

solutions, and therefore bfs. The Simplex method is a process of searching an
optimal bfs by moving from a bfs to an adjacent one. This means (assuming
that no bfs is repeated) that the Simplex method will find an optimal bfs
after a finite number of iterations. In principle, we could enumerate all bfs to
an LP and find the bfs with the best z-value. The problem with this approach
is that even small-size LPs have a very large number of bfs. For example, an
LP in standard form that has 20 variables and 10 constraints might have (if
each basic solution were feasible) up to

(
20
10

)
= 184, 756 bfs. Fortunately, vast

experience with the Simplex algorithm indicates that when this algorithm
is applied to an n-variable, m-constraint LP in standard form, an optimal
solution is usually found after examining fewer than 3m bfs. Thus, for a

7
The pivot element ast is always a “positive” number since Step 3 ignores any neg-

ative elements in the entering-variable column. Also, all the elements in the rhs remain 
nonnegative. (At this stage, notice that if you find any negative rhs entry, it’s a sure sign 
that you’ve made a mistake somewhere during the Simplex procedure! More complicated 
situations will be addressed in Chapter 7.)
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20-variable, 10-constraint LP in standard form, the Simplex procedure will 
usually find an optimal solution after examining fewer than 30 bfs. Com-
pared with the alternative of examining 184, 756 basic solutions, the Simplex 
method i s quite efficient.
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2 The Simplex Method in Algebraic Form

In the previous chapter, the fundamental law of LP, a concise introduction 
of basic feasible solution, and a brief demonstration of the Simplex method 
in tabular form had been given. In this chapter, we introduce the Simplex 
method in algebraic form, which is essential to the sensitivity analysis and 
duality theory of LP. The more detailed theoretical background of the Sim-
plex algorithm will be provided.

Recall that the Simplex method is an iterative method for solving an LP 
in standard form. It moves from a basic feasible solution (bfs) to another 
with a better objective value until an optimal solution is found, if it exists.1

Before introducing the algebraic formulae of the Simplex method, the 
algebraic Simplex procedure will be illustrated and explained by an exam-
ple of a minimisation LP. Then the connection of the Simplex algorithm in 
algebraic form and the Simplex tableau will be made.

2.1 Example of Algebraic Simplex Procedure

Consider the following LP:

min z = −x1 − 2x2

s.t. −2x1 + x2 ≤ 2
−x1 + 2x2 ≤ 7
x1 ≤ 3
x1, x2 ≥ 0

1Other situations such as unboundedness, infeasibility and degeneracy will be intro-
duced in this and the following chapters.
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To convert it to the standard form, three slack variables x3, x4 and x5

are introduced as follows.2

min z = −x1 − 2x2

s.t. −2x1 + x2 + x3 = 2
−x1 + 2x2 + x4 = 7
x1 + x5 = 3
x1, x2, x3, x4, x5 ≥ 0

The matrix form of this LP in standard form is

min z = cTx
s.t. Ax = b

x ≥ 0,

where
x = (x1, x2, x3, x4, x5)

T ,

cT = (−1,−2, 0, 0, 0),

b = (2, 7, 3)T

A =



−2 1 1 0 0
−1 2 0 1 0
1 0 0 0 1


 .

Each of the constraints has a unique slack variable. Obviously, these slack
variables can be chosen as the basic variables to construct an initial basis, i.e.
xB = (x3, x4, x5)

T . By setting the other part of decision variables, nonbasic
variables, equal to zero, i.e. xN = (x1, x2)

T = 0, and solving the system of
linear equations, we obtain the initial bfs

(x1, x2, x3, x4, x5) = (0, 0, 2, 7, 3).

The corresponding objective function value is z = 0.

We now investigate whether there exists an adjacent bfs, which can be ob-
tained by changing only one element in the current basis, and give a better
objective value.

2
To facilitate further presentation, we set the slack variables with the notation xi 

instead of si.
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To do this, we first express each basic variable in xB in terms of the nonbasic
variable(s) x1 and/or x2 as follows:

x3 = 2 + 2x1 − x2,
x4 = 7 + x1 − 2x2,
x5 = 3− x1,

and rewrite the objective in the equality form with the constant term left on
the rhs:

z + x1 + 2x2 = 0.

Recall that the current bfs retains nonbasic variables x1 = x2 = 0 and the
objective function value z = 0. Now observe that the coefficients of x1 and
x2 in the objective equality form are positive. If either x1 or x2 is increased
from zero, then the z-value will decrease, meaning that a better solution will
be yielded. Since the coefficient of x2, 2, is greater than that of x1, 1, the
z-value will decrease more rapidly by increasing x2 than x1. With a greedy
attitude to the progress on the solution, we prefer to choose x2 as the new
element (entering variable) in the new basis.3 Then x1 is still a nonbasic
variable, whose value in the new basic solution is kept as zero.

Now by taking x1 = 0, the objective in the equality form becomes

z + 2x2 = 0,

and the constraints become

x3 = 2− x2,
x4 = 7− 2x2,
x5 = 3.

The more x2 is increased, the more improved the z-value gets. However, to
maintain the nonnegativity of the basic variables the value of x2 must satisfy

x3 = 2− x2 ≥ 0 ⇒ x2 ≤
2

1

x4 = 7− 2x2 ≥ 0 ⇒ x2 ≤
7

2

3Choosing the nonbasic variable with the most positive coefficient (for the minimisation 
LP) in row 0 as the entering variable usually but not always leads us quickly to the optimal 
bfs. Actually, even if we choose x1, the Simplex algorithm will eventually find an optimal 
solution, though, probably with more iterations.
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Hence we have

x2 ≤ min
{2
1
,
7

2

}
= 2.

So x2 can only be increased from 0 to 2. By doing so, we have

x3 = 2− 2 = 0 (the leaving variable),
x4 = 7− 2× 2 = 3.

Hence we obtain a new bfs

(x1, x2, x3, x4, x5) = (0, 2, 0, 3, 3).

The new basis is (x2, x4, x5). The corresponding objective value is z =
−2× 2 = −4. This completes the first iteration of the Simplex method.

Now the second iteration can commence with checking whether the cur-
rent basis (x2, x4, x5) is optimal.
Again, we express the basic variables in terms of nonbasic variables (x1, x3):

x2 = 2 + 2x1 − x3,
x4 = 7 + x1 − 2x2

= 7 + x1 − 2(2 + 2x1 − x3)
= 3− 3x1 + 2x3,

x5 = 3− x1;

Or equivalently,

−2x1 +x2 +x3 = 2,
3x1 −2x3 +x4 = 3,
x1 +x5 = 3.

And we set the objective in the equality form also in terms of nonbasic
variables (x1, x3) with constant term left on rhs.

z + x1 + 2x2 = 0
⇒ z + x1 + 2(2 + 2x1 − x3) = 0
⇒ z + 4 + 5x1 − 2x3 = 0
⇒ z + 5x1 − 2x3 = −4

Now observe that in the above objective equality form only the coefficient of 
x1 is positive. To get a better objective function value, we can only increase 
x1. So x3 is still a nonbasic variable, whose value in the new basic solution 
is kept as 0. By taking x3 = 0, the objective in the equality form becomes
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z + 5x1 = −4,

and the constraints become

x2 = 2 + 2x1,
x4 = 3− 3x1,
x5 = 3− x1.

To maintain the nonnegativity of the basic variables, the value of x1 must
satisfy

x2 = 2 + 2x1 ≥ 0 ⇒ x1 ≥ −
2

2
(redundant)

x4 = 3− 3x1 ≥ 0 ⇒ x1 ≤
3

3

x5 = 3− x1 ≥ 0 ⇒ x1 ≤
3

1

Hence

x1 ≤ min
{3
3
,
3

1

}
= 1.

Thus x1 can only be increased from 0 to 1. By doing so, we have

x2 = 2 + 2 = 4,
x4 = 3− 3× 1 = 0 (the leaving variable),
x5 = 3− 1 = 2.

And it yields a new bfs

(x1, x2, x3, x4, x5) = (1, 4, 0, 0, 2).

Now the new basis is xB = (x1, x2, x5)
T , and the corresponding objective 

value is z = −4 − 5 × 1 = −9. This completes the second iteration. The next 
iteration can be continued using the current basis xB = (x1, x2, x5). We stop 
the demonstration of this example here.

Note that at each iteration we identify only one nonbasic variable that 
can improve the objective, if it exists. Then the entering variable is increased 
until some basic variable decreases to zero and leaves the basis. This gives a 
new bfs, and the process repeats until an optimal bfs is yielded.
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2.2 General Formulae of the Simplex Method

The Simplex method starts with a bfs (extreme point), and then searches 
for a better one. If no bfs with a better objective value can be found, then 
we are at an optimal solution. Otherwise, it steps to a new bfs and repeats 
the process. The Simplex search is moving from one extreme point to an 
adjacent extreme point4 along an “edge” of the feasible region. In particular, 
only one of the nonbasic variables is allowed to move away from 0 and enter 
the basis; at the same time one of the basic variables becomes 0 and leaves 
the basis. That is, we change only one element of the basis at each iteration.

In this section, we present the general algebraic formulae of the Simplex 
method, assuming that an initial bfs5 exists.
Consider a minimisation LP in standard form

min z = cTx
s.t. Ax = b

x ≥ 0,

where

x = (x1, · · · , xn)
T ;

c = (c1, · · · , cn)
T ;

b = (b1, · · · , bm)
T , bi ≥ 0, ∀i = 1, . . . , m;

A = [A1, · · · ,An] =




a11 . . . a1n
... · · ·

...
am1 . . . amn




with n > m and rank(A) = m.

From x, we select a set of m variables whose corresponding column vectors
in matrix A are linearly independent to construct a basis xB . Denote by B
the m×m matrix which is defined by those columns, and call it basic matrix.
Recall that the variables in the basis xB are called the basic variables.
The remaining n − m variables in x are called the nonbasic variables, and
the vector constructed with them is denoted by xN and called the nonbasis.
The m× (n−m) matrix built by their respective columns in A is denoted by

4Recall that for any m-constraint LP two bfs are adjacent if their bases share m − 1
common basic variables.

5We will show how to find an initial bfs shortly.
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N and called nonbasic matrix. Without loss of generality6, we assume that
the basic variables in xB are the first m entries in x, i.e.

xT = (xT
B
|xT

N
),

and hence
A = [B|N].

The corresponding coefficients of xB and xN in the objective function are
denoted by cB and cN, respectively, i.e.

cT = (cT
B
|cT

N
).

Taking the aforementioned example with m = 3 and n = 5 for instance,
we have

cT = (−1, −2, 0, 0, 0),

A =



−2 1 1 0 0
−1 2 0 1 0
1 0 0 0 1


 ,

bT = (2, 7, 3).

If we choose the basis xB = (x3, x4, x5)
T , then we have

xN = (x1, x2)
T ,

B =




1 0 0
0 1 0
0 0 1


 , N =



−2 1
−1 2
1 0


 ,

cT
B
= (0, 0, 0), cT

N
= (−1, −2).

Using the notation, the considered LP can be rewritten in the form

min z = cT
B
xB + cT

N
xN

s.t. BxB +NxN = b
x ≥ 0.

Or equivalently, we find the minimum value of z satisfying the condition

z − cT
B
xB − cT

N
xN = 0, (1)

6The order of components in x can be rearranged, if necessary.
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subject to

BxB +NxN = b, (2)

x ≥ 0. (3)

Recall that if the basis xB obtained by setting xN = 0 in (2) satisfies (3),
i.e. xB = B−1b ≥ 0, then the basic solution (xT

B
|0T ) is feasible and called

basic feasible solution (bfs).

To facilitate the further observation of the Simplex process of moving from
one bfs to an adjacent bfs, i.e. swapping one nonbasic variable in the nonbasis
xN for one basic variable in the basis xB in each iteration, we reformulate
the basic variables and the objective in terms of the nonbasic variables.

From (2) we can express xB in terms of xN as follows:

BxB = b−NxN,

xB = B−1(b−NxN)

= B−1b−B−1NxN. (4)

To express the objective function in terms of xN, we substitute (4) into (1)
and have

z −
(
cT
B
(B−1b−B−1NxN) + cT

N
xN

)
= 0,

z − cT
B
B−1b+ (cT

B
B−1N− cT

N
)xN = 0.

So, the value of z must satisfy the equality

z + (cT
B
B−1N− cT

N
)xN = cT

B
B−1b, (5)

and the rhs of (5) is a constant term.

Denote
ĉT
N
= cT

B
B−1N− cT

N
.

Each component ĉj of ĉN is called the reduced cost 7 of the nonbasic variable
xj in xN.

7The reduced cost of a decision variable is its coefficient in row 0 of the Simplex tableau. 
Note that the reduced costs for all basic variables are always 0s. The reduced cost of a 
nonbasic variable is the amount by which the value of z will “decrease” if we increase the 
value of the nonbasic variable by 1 (while all the other nonbasic variables remain equal 
to 0). In other words, it indicates how much the objective function coefficient on the 
corresponding variable must be improved before the value of the variable will be positive 
in the optimal solution.
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Then the equality (5) can be rewritten in the form

z + ĉT
N
xN = cT

B
B−1b. (6)

To analyse the possibility of improving the z-value by entering one nonbasic
variable in xN into the basis, i.e. increasing one nonbasic variable from zero
and hence making xN ≥ 0, we consider the following two cases for (6).

Case 1: ĉN ≤ 0.

From (6) we have
z = cT

B
B−1b− ĉT

N
xN,

which means that the z-value could increase and will never get improved if
we increase any nonbasic variable instead of keeping xN = 0. If B−1b ≥ 0,
the basic solution (xT

B
|0T ) is a bfs and hence an optimal solution with the

optimal objective value z = cT
B
B−1b.

Case 2: There exists at least one positive reduced cost in ĉN.

In this case, the objective value can be improved by increasing one of the
nonbasic variables with positive reduced costs, say xt. Hence we can generate
a new basis by entering xt into the current basis. And then one original basic
variable needs to leave from the current basis.
Once xt with ĉt > 0 has been selected, we must determine how much it can
be increased before any nonnegativity constraint is violated.
We have the current basic variables defined by (4)

xB = B−1b−B−1NxN.

Setting all components of xN other than xt equal to zeros gives

xB = B−1b−B−1Atxt = b̂− Âtxt, (7)

where b̂ = B−1b and Ât = B−1At.

Denoting Ât = (â1t, â2t, · · · , âmt)
T , we examine (7) component-wise: for

each i = 1, 2, . . . , m,
(xB)i = b̂i − âitxt.

Then we have the following two subcases.

13



(i) Ât ≤ 0.
None of the basic variables will decrease in value as xt is increased from
zero. So xt can be increased unlimitedly without causing the violation
of any nonnegativity constraint. In this case, the objective value will
decrease and thus get improved unboundedly as xt → ∞, indicating
that the LP is unbounded.

(ii) There exists at least one positive component in Ât.
Assume we have âit > 0 for some i. Then (xB)i will decrease as xt in-
creases. More precisely, (xB)i will decrease to zero when xt is increased

from 0 to
b̂i

âit
.

Now assume that we have more than one positive components in Ât.
Then the value to which xt can be increased is decided by

min
1≤i≤m

{ b̂i

âit
: âit > 0

}
.

This is exactly the ratio test. If the index

s = arg min
1≤i≤m

{ b̂i

âit
: âit > 0

}

is obtained, then xt will take over the position of (xB)s, which will leave
for xN, to make a new basis and hence a new bfs which gives a better
objective value.8

2.3 The Simplex Algorithm in Algebraic Form
In this section, we outline the Simplex algorithm in algebraic form. 
Consider the LP in standard form

min (or max) z = cTx
s.t. Ax = b

x ≥ 0,

where b ≥ 0.

8
The current nonbasic variable xt is called the entering variable, and the current basic 

variable (xB)s is called the leaving variable.
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The Simplex method starts with a feasible basis xB and the corresponding
basic matrix B (i.e. the condition B−1b ≥ 0 holds). Using the notation
defined in the last section, the steps of the Simplex algorithm are given
below.

Step 1. Compute the vector

ĉT
N
= cT

B
B−1N− cT

N

• If ĉN ≤ 0 (or ĉN ≥ 0), the current bfs is optimal; STOP.

• Otherwise, select a variable xt satisfying ĉt > 0 with the most positive
ĉt (or ĉt < 0 with the most negative ĉt) as the entering variable.

Step 2. Let At be the column of A corresponding to the variable xt.

Compute Ât = B−1At. Let Ât = (â1t, â2t, · · · , âmt)
T .

• If Ât ≤ 0, then the LP problem is unbounded.

• Otherwise, find the index

s = arg min
1≤i≤m

{ b̂i

âit
: âit > 0

}
.

Then select (xB)s as the component which is leaving out of the current
basis xB.

Step 3. Replace (xB)s with xt to obtain a new basis xB.
Update the basic matrix B. Then GO TO Step 1.

2.4 The Algebraic Simplex Tableau
This section introduces the algebraic Simplex tableau, where the algebraic 
formula in each entry is derived from the Simplex general formula. The 
Simplex procedure can be done by iterating the calculation of the algebraic 
Simplex tableau with a given basis. Let xB and B be respectively the chosen 
basis and the corresponding basic matrix to initiate some Simplex iteration. 
In matrix-vector notation, the current full Simplex tableau is of the form:
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basis x rhs

z cT
B
B−1A− cT cT

B
B−1b

= ĉT

xB B−1A B−1b

= Â = b̂

Notice that we have chosen the basic solution (xT
B
|0T ). Hence, from (4)

we have xB = B−1b, which gives the bottom right entry b̂. Since the
system of equation is Ax = b, we have B−1Ax = B−1b, which accounts
for the bottom left entry Â = B−1A. Since from (1) the objective func-
tion is z = cT

B
xB + cT

N
xN, the basic solution xB = B−1b, xN = 0 makes

z = cT
B
B−1b, which gives the top right entry. To get the top left entry,

we return back to the original objective function z − cTx = 0 and thus have
z−cTx+cT

B
B−1b = cT

B
B−1b. Then it is obvious that z−cTx+cT

B
B−1Ax =

z + (cT
B
B−1A− cT )x = cT

B
B−1b, which gives ĉT = cT

B
B−1A− cT .

Decomposing the decision variables x accordingly into the basis xB and non-
basis xN, we have the equivalent tableau:

basis xN xB rhs

z cT
B
B−1N− cT

N
0T cT

B
B−1b

xB B−1N I B−1b

While it is not realistic to divide the columns into two groups with xB and 
xN like the above tableau (i.e. continually reordering the columns based 
on the current basis xB), it does illustrate the property that the submatrix 
in the Simplex tableau corresponding to xB is the identity matrix, and the 
reduced costs of all the components of xB are zeros.
The ratio test and EROs at each Simplex iteration will be done in each 
Simplex tableau. Actually, the EROs performed after deciding the entering 
variable paired with the leaving variable is equivalent to the calculation of 
the entries in the tableau with the above algebraic formulae. In other words, 
the above algebraic Simplex tableau can be utilised to generate a Simplex 
tableau for any given basis xB.
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Now we look back on the example in Section 2.1 and utilise the Simplex 
tableau technique to solve it. Its initial Simplex tableau is shown as below.

basis x1 x2 x3 x4 x5 rhs

z 1 2 0 0 0 0

x3 -2 1 1 0 0 2

x4 -1 2 0 1 0 7

x5 1 0 0 0 1 3

Since the most positive reduced cost is ĉ2 = 2, x2 is the entering variable.
The ratio test min{2

1
, 7

2
} gives that x3 is the leaving variable. By pivoting9, a

new basis and thus bfs can be produced in the second Simplex tableau added
below the first one.

basis x1 x2 x3 x4 x5 rhs

z 1 2 0 0 0 0

x3 -2 1 1 0 0 2 2

1
= 2

x4 -1 2 0 1 0 7 7

2
= 3.5

x5 1 0 0 0 1 3

z 5 0 -2 0 0 -4 R′
0
← R0 − 2R1

x2 -2 1 1 0 0 2

x4 3 0 -2 1 0 3 R′
2
← R2 − 2R1

x5 1 0 0 0 1 3

In the current Simplex tableau, the most positive reduced cost is ĉ1 = 5.
So, x1 is the entering variable. The ratio test min{3

3
, 3
1
} gives that x4 is the

leaving variable. Then again we have a new basis and bfs in the third Simplex
tableau. The Simplex procedure is repeated as shown in the tableaux below.

9You can perform the pivoting with EROs or do the calculation of entries by Simplex
algebraic formulae.
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basis x1 x2 x3 x4 x5 rhs

z 1 2 0 0 0 0

x3 -2 1 1 0 0 2

x4 -1 2 0 1 0 7

x5 1 0 0 0 1 3

z 5 0 -2 0 0 -4 R′
0
← R0 − 2R1

x2 -2 1 1 0 0 2

x4 3 0 -2 1 0 3 R′
2
← R2 − 2R1

x5 1 0 0 0 1 3

z 0 0 4

3
-5
3

0 -9 R′′
0
← R′

0
− 5R′′

2

x2 0 1 -1
3

2

3
0 4 R′′

1
← R′

1
+ 2R′′

2

x1 1 0 -2
3

1

3
0 1 R′′

2
← 1

3
R′

2
(go first)

x5 0 0 2

3
-1
3

1 2 R′′
3
← R′

3
−R′′

2

z 0 0 0 -1 -2 -13 R′′′
0
← R′′

0
− 2R′′

3

x2 0 1 0 1

2

1

2
5 R′′′

1
← R′′

1
+ 1

2
R′′

3

x1 1 0 0 0 1 3 R′′′
2
← R′′

2
+R′′

3

x3 0 0 1 -1
2

3

2
3 R′′′

3
← 3

2
R′′

3
(go first)

In the last tableau, there is no positive reduced costs and it is the final
optimal tableau.
The optimal bfs for the LP in standard form is

(x1, x2, x3, x4, x5) = (3, 5, 3, 0, 0),

and the optimal solution for the original LP problem is

(x1, x2) = (3, 5).

The optimal objective value is zmin = −13.
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1 Further Examples of the Simplex Method

1.1 Example 1 – Unique Optimal Solution
Consider the following minimisation LP.

min z = x1 + x2 − 4x3

s.t. x1 + x2 + 2x3 + x4 = 9
x1 + x2 − x3 + x5 = 2
−x1 + x2 + x3 + x6 = 4

x1, x2, x3, x4, x5, x6 ≥ 0

Note that this LP is already in standard form, and actually in canonical form
as well. So we obviously can have an initial basis xB = (x4, x5, x6)

T .
The first Simplex tableau is

basis x1 x2 x3 x4 x5 x6 rhs

z -1 -1 4 0 0 0 0

x4 1 1 2 1 0 0 9

x5 1 1 -1 0 1 0 2

x6 -1 1 1 0 0 1 4

The entering variable is x3, and by the ratio test min{9
2
, 4

1
} we choose x6 as

the leaving variable.10

Thus the new basis is xB = (x4, x5, x3)
T . Using EROs to make Column 3

become a pivot column gives the second Simplex tableau as below.

basis x1 x2 x3 x4 x5 x6 rhs

z 3 -5 0 0 0 -4 -16 R′
0
← R0 − 4R3

x4 3 -1 0 1 0 -2 1 R′
1
← R1 − 2R3

x5 0 2 0 0 1 1 6 R′
2
← R2 +R3

x3 -1 1 1 0 0 1 4

10Note that only the basic variables with âit > 0 can be considered.

19



Now x1 is the only one with a positive reduced cost, so it will enter in the
basis. Neither of the last two rows can give us the leaving variable (since
they don’t have a positive entry in Column 1), so x4 is the leaving variable.
We pivot again and have the following tableau.

basis x1 x2 x3 x4 x5 x6 rhs

z 0 -4 0 -1 0 -2 -17 R′′
0
← R′

0
−R′

1

x1 1 -1
3

0 1

3
0 −2

3

1

3
R′′

1
← 1

3
R′

1
(go first)

x5 0 2 0 0 1 1 6

x3 0 2

3
1 1

3
0 1

3

13

3
R′′

3
← R′

3
+R′′

1

No positive reduced cost exists in row 0, so this is the final optimal tableau.
The optimal solution to this LP is (x1, x2, x3, x4, x5, x6) = (1 , 0, 13 , 0, 6, 0)

3 3

with the optimal objective value zmin = −17.

1.2 Example 2 – Unbounded LP
Consider the following maximisation LP in standard form.

max z = 2x1 + 3x2

s.t. x1 − x2 + s1 = 1
x1 − 2x2 + s2 = 2

x1, x2, s1, s2 ≥ 0

The first Simplex tableau is

basis x1 x2 s1 s2 rhs

z -2 -3 0 0 0

s1 1 -1 1 0 1

s2 1 -2 0 1 2

The most negative reduced cost belongs to x2, so it should enter the basis. 
However, there is no positive entry âit in its column. A leaving variable 
cannot be obtained.
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This means that as x2 increases both s1 and s2 increase. So neither will
become 0. In geometric terms, the feasible region is unbounded along the
x2 axis. Since x2 has a negative reduced cost, moving in this direction leads
to an improvement in the objective value without bound, i.e. the objective
tends to ∞. Therefore, this LP problem is unbounded.
The Simplex method can terminate in either of two situations – either find-
ing an optimal solution or having determined the unboundedness of the LP
problem.11

1.3 Example 3 – Alternative Optimal Solutions
Consider the following minimisation LP in standard form.

min z = −3x1 − x2 −
1

2
x3

s.t. 6x1 − x3 + s1 = 12
x2 + x3 + s2 = 10

x1, x2, x3, s1, s2 ≥ 0

The Simplex algorithm procedure gives the following tableaux

basis x1 x2 x3 s1 s2 rhs

z 3 1 1

2
0 0 0

s1 6 0 -1 1 0 12

s2 0 1 1 0 1 10

z 0 1 1 −1

2
0 -6

x1 1 0 −1

6

1

6
0 2

s2 0 1 1 0 1 10

z 0 0 0 −1

2
−1

2
-16

x1 1 0 −1

6

1

6
0 2

x2 0 1 1 0 1 10

11In real-world applications, unbounded LPs are usually a sign that the LP models were
not properly or correctly formulated.
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So an optimal bfs is (x1, x2, x3, s1, s2) = (2, 10, 0, 0, 0) with the optimal ob-
jective value zmin = −16.

Notice that x3 is a nonbasic variable, but has a reduced cost of 0. This
means that it could enter the basis without changing the current objective
value which is optimal. Thus, we could have more than one optimal solution,
i.e. there could be alternative optimal solutions. Now we proceed to the next
Simplex iteration by entering x3 into the basis as follows.

basis x1 x2 x3 s1 s2 rhs

z 0 0 0 −1

2
−1

2
-16

x1 1 0 −1

6

1

6
0 2

x2 0 1 1 0 1 10

z 0 0 0 −1

2
−1

2
-16

x1 1 1

6
0 1

6

1

6

11

3

x3 0 1 1 0 1 10

So an alternative optimal bfs is (x1, x2, x3, s1, s2) = (11
3
, 0, 10, 0, 0), undoubt-

edly with the same optimal objective value zmin = −16.

If there is no nonbasic variables with a zero coefficient in row 0 of the 
optimal tableau, then the LP has a unique optimal solution. Even if there 
is a nonbasic variable with a zero coefficient in row 0 of the optimal tableau, 
it is possible that the LP does not have alternative optimal solutions. In 
solving an LP (at least for this subject), it is sufficient to find “one” optimal 
solution, if it exists.

1.4 Convergence and Degeneracy of the 
Sim-plex Method

On all examples we have seen so far, the Simplex method works. Formally 
speaking, it converges to an optimal solution, if one exists. But is this actu-
ally the case for any LP problem?
The usual argument for why the Simplex method will converge in most cases 
goes as follows. At each iteration before reaching an optimal solution, we

22



find a new basis and get a strict improvement in the objective. We can never
go back to a previous basis since it will make our objective worse.12

Where this argument can fall down is the assumption that we will always get
a strict improvement in the objective before obtaining an optimal solution.
In some cases, the objective value might stay the same after one iteration.
This situation occurring in the Simplex procedure is known as degeneracy.
It can arise when some of the basic variables have value zero in a bfs.

Consider the following example

min z = −3

4
x1 + 150x2 −

1

50
x3 + 6x4

s.t. 1

4
x1 − 60x2 −

1

25
x3 + 9x4 ≤ 0

1

2
x1 − 90x2 −

1

50
x3 + 3x4 ≤ 0

x3 ≤ 1

x1, x2, x3, x4 ≥ 0

Adding slack variables (x5, x6, x7) respectively to the three constraints, we
proceed with the Simplex solution procedure in the usual way. When we en-
counter a tie in the ratio test, we will select the first row giving the minimum
ratio. The initial Simplex tableau is

basis x1 x2 x3 x4 x5 x6 x7 rhs

z 3

4
-150 1

50
-6 0 0 0 0

x5
1

4
-60 - 1

25
9 1 0 0 0

x6
1

2
-90 - 1

50
3 0 1 0 0

x7 0 0 1 0 0 0 1 1

You can notice that in the initial bfs the basic variables x5 and x6 both
have the value of zero. The result of the first six iterations of the Simplex
procedure is shown in the following table.

12An individual basic variable can re-enter the basis, but we won’t have exactly the
same set of basic variables in the basis.
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Iteration xB z value

0 (x5, x6, x7) 0

1 (x1, x6, x7) 0

2 (x1, x2, x7) 0

3 (x3, x2, x7) 0

4 (x3, x4, x7) 0

5 (x5, x4, x7) 0

6 (x5, x6, x7) 0

Note that after the first iteration, after the second one, after the third one
and so one, the objective value remains unaltered. The degeneracy does
occur. Then there may be many bfs that correspond to some non-optimal
extreme point. The simplex algorithm might encounter all these sets of
bfs before it finds that it was at a non-optimal extreme point. In some
cases, the degeneracy just causes more iterations and thus the inefficiency of
the Simplex method. The Simplex procedure might still reach an optimal
solution even though a degeneracy happens.
Unfortunately, this is not the case for this considered example. Notice that
the basis in the 6th iteration is exactly that in the initial Simplex tableau.
After all those six iterations, we have gone precisely nowhere. This is known
as cycling, as the Simplex procedure will return back to some basis again and
again. Actually an optimal solution to this LP does exist:

2
(x1, x2, x3, x4) = (

50
, 0, 1,0 ) with zmin =-

-1
20

.

However, the simple version of the Simplex method that we have introduced 
will never find it.
There are a few modifications in the Simplex method to avoid cycling alto-
gether. The most common one is to perturb the rhs slightly, e.g. to change
the rhs randomly in this considered LP to

b′ = (0.0000001274, 0.0000000432, 1)T .

From the theoretical perspective, the Simplex procedure will converge to an
optimal solution (if one exists) in the absence of degeneracy.

Further reading: Section 4.7–4.8, 4.11 and 6.2 in the reference book “Operations
Research: Applications and Algorithms” (Winston, 2004)
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