
Duality of Linear Programming

1 The Normal Form of an LP

An LP in general form satisfying the following form

min (or max) z = cTx

s.t. Ax ≥ (or ≤) b

x ≥ 0

is said to be in the normal form.

Notice in the normal form no sign restriction is imposed on rhs b.1

Any LP in general form can be transformed into an equivalent LP

in normal form, say minimisation normal form, by the following

procedures:

• converting max z = cTx into min z′ = −z = −cTx;

• replacing any urs variable xi with two nonnegative variables

x′i and x′′i by setting xi = x′i − x′′i ;

• multiplying any “≤” constraint by −1 to obtain a “≥” con-

straint;

1Recall that nonnegative rhs b ≥ 0 is required in the standard form.
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• replacing any “=” constraint with a “≥” constraint and a

“≤” constraint, e.g. the equality constraint

2x1 + 5x2 = 7

is identical to

2x1 + 5x2 ≥ 7;

2x1 + 5x2 ≤ 7.

Example 1.

Consider the LP

max z = 3x1 + x2

s.t. 2x1 + 5x2 = 7

x1 + x2 ≥ 3

x1, x2 ≥ 0

Its minimisation normal form is

min z′ = −3x1 − x2

s.t. 2x1 + 5x2 ≥ 7

−2x1 − 5x2 ≥ −7

x1 + x2 ≥ 3

x1, x2 ≥ 0

And its maximisation normal form is

max z = 3x1 + x2

s.t. −2x1 − 5x2 ≤ −7

2x1 + 5x2 ≤ 7

−x1 − x2 ≤ −3

x1, x2 ≥ 0
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2 The Dual LP

For any LP, there exists a dual LP. The dual of an LP in minimi-

sation normal form

min z = cTx

s.t. Ax ≥ b (P)

x ≥ 0

is the LP

max w = bTy

s.t. ATy ≤ c (D)

y ≥ 0

which is in maximisation normal form. The LP (P) is called the

primal, and (D) is called the dual of (P).

The variable yi ∈ y (i = 1, 2, . . . ,m) is called the dual variable

associated with the ith constraint of the primal LP.

The variable xj ∈ x (j = 1, 2, . . . , n) is called the primal variable

associated with the jth constraint of the dual LP.

The primal (in minimisation normal form) and its dual (in

maximisation normal form) can be simultaneously demonstrated

in the display

xT

y A ≥ b

≤ cT

or equivalently
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x1 x2 · · · xn

y1 a11 a12 · · · a1n ≥ b1

y2 a21 a22 · · · a2n ≥ b2

...
...

...
...

...
...

ym am1 am2 · · · amn ≥ bm

≤ c1 ≤ c2 · · · ≤ cn

Given a primal LP in normal form, we can generate by the above

table its dual LP in normal form, which is called the symmetric

dual. Provided that the given primal LP is not in normal form2,

we can have its asymmetric dual by the following rules, which

summarise the relationship between constraints and variables in

the primal and dual.

primal/dual constraint dual/primal variable

consistent with normal form ⇐⇒ variable ≥ 0

reversed with normal form ⇐⇒ variable ≤ 0

equality constraint ⇐⇒ variable urs

Example 2.

The dual of the LP

min z = 3x1 + x2

s.t. 2x1 + 5x2 ≥ 7

x1 + 4x2 ≥ 2

x1, x2 ≥ 0

2We could convert it into an equivalent LP in normal form, though.
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is

max w = 7y1 + 2y2

s.t. 2y1 + y2 ≤ 3

5y1 + 4y2 ≤ 1

y1, y2 ≥ 0

Example 3.

Find the dual of the LP

min z = 4x1 + 12x2 + x3

s.t. −x1 − 4x2 + x3 ≤ 1

2x1 + 2x2 + x3 ≥ 2

x1, x2, x3 ≥ 0

We first find the normal form of the considered LP

min z = 4x1 + 12x2 + x3

s.t. x1 + 4x2 − x3 ≥ −1

2x1 + 2x2 + x3 ≥ 2

x1, x2, x3 ≥ 0

Hence, the dual is

max w = −y1 + 2y2

s.t. y1 + 2y2 ≤ 4

4y1 + 2y2 ≤ 12

−y1 + y2 ≤ 1

y1, y2 ≥ 0

The Primal-Dual table of Example 3 can be shown as follows:
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x1 x2 x3

y1 1 4 −1 ≥ −1

y2 2 2 1 ≥ 2

≤ 4 ≤ 12 ≤ 1

3 The Dual Theorem

3.1 The Dual of the Dual

Lemma 1

The dual of the dual is the primal.

Proof

Assume w.l.o.g. that the primal LP is in minimisation normal

form (P). Then the dual is exactly (D).

Obviously, the minimisation normal form of the dual (D) is

min u = −bTy

s.t. −ATy ≥ −c

y ≥ 0

Then the dual of the above LP is

max v = −cTx

s.t. −(AT )Tx ≤ −b

x ≥ 0

Since (AT )T = A, the above LP is equivalent to the primal (P). �
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3.2 The Weak Duality

Theorem 2

For any feasible solution x to the primal LP (P) and any feasible

solution y to the dual LP (D), we have

cTx ≥ bTy,

i.e. z ≥ w.

Proof

From the constraints of the dual (D), we have ATy ≤ c. Trans-

posing this inequality gives yTA ≤ cT .

Since x ≥ 0, we have

cTx ≥ (yTA)x

= yT (Ax)

≥ yT b (from the constraints of the primal (P))

= bTy (transpose of a scalar). �

Corollary 3

1) If the primal LP is unbounded, then the dual LP is infeasi-

ble.3

2) If the dual LP is unbounded, then the primal LP is infeasible.

3The proof by contradiction is trivial. Assume that the primal LP is unbounded and
the dual LP is feasible. Hence there exists a dual feasible solution y (satisfying ATy ≤ c)
such that the dual objective value bTy is a finite number. If this is the case, then (as per
Theorem 2) cTx has a lower bound, which contradicts the unboundedness of the primal
LP.
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Example 4.

Consider the primal and its dual in Example 2. A feasible solution

to the primal is (x1, x2) = (1, 1), which gives the objective value

z = 3 × 1 + 1 = 4. A feasible solution to the dual is (y1, y2) =

(0, 0.25), which gives the objective value w = 7×0+2×0.25 = 0.5.

Sure enough, the solutions satisfies Theorem 2. Furthermore, we

now know that their optimal objective values exist and satisfy the

inequality

4 ≥ zmin ≥ wmax ≥ 0.5.

Actually the “≥” in the middle can be replaced with “=” based

on a stronger result that we are going to introduce.

3.3 The Strong Duality

Theorem 4

If an optimal solution to the primal LP (P) is obtained, then an

optimal solution to its dual LP (D) can readily be obtained. Both

optimal objective values are equal, i.e. zmin = wmax. In other

words, the equality cTx = bTy holds if and only if x is a primal

optimal solution and y is a dual optimal solution.

Proof

If there exists an optimal solution to the primal (P), then there

exists a primal bfs which is optimal. Denote this primal optimal

bfs by x∗, and assume that B and N are the corresponding basic

and nonbasic matrices, respectively. Then the primal optimal bfs

can be written in the form x∗T = (x∗
N

T |x∗
B

T ).
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We first show that a solution

y∗ = (cT
B
B−1)T

is a feasible solution to the dual (D).

Since the primal (P) is a minimisation LP, for the optimal bfs x∗

all the reduced costs of nonbasic variables must be nonpositive,

i.e.

ĉT
N
= cTBB

−1N− cT
N
≤ 0T ⇒ cTBB

−1N ≤ cT
N
. (1)

Hence, we have

ATy∗ = AT (cT
B
B−1)T

= (cT
B
B−1A)T

= (cT
B
B−1(N |B))T

= (cT
B
B−1N | cT

B
B−1B)T

= (cT
B
B−1N | cT

B
)T

(1)

≤ (cT
N
| cT

B
)T

= c.

So, y∗ is a feasible solution to the dual (D). The corresponding

objective value is

w∗ = bTy∗ = bT (cT
B
B−1)T

= (cT
B
B−1b)T

= (cT
B
x∗
B
)T

= cT
B
x∗
B
(transpose of a scalar)

= zmin.
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According to Theorem 2 (weak duality), for any dual feasible so-

lution we have

w ≤ zmin = w∗.

Hence w∗ = wmax and y∗ is an optimal solution to the dual (D).

And zmin = wmax is shown as well. �

Since the dual of the dual LP is the primal LP, the reverse of

Theorem 4 follows immediately.

Corollary 5

If an optimal solution to the dual LP (D) is obtained, an optimal

solution to its primal LP (P) can be readily obtained and both

optimal objective values are equal.

Example 5.

As an illustration for Theorem 4, consider the primal and its dual

in Example 2.

The optimal bfs to the primal LP is (x∗1, x
∗
2) = (0, 1.4) with the

optimal objective value zmin = 1.4.

The optimal bfs to the dual LP is (y∗1, y
∗
2) = (0.2, 0) with the

optimal objective value wmax = 1.4.

Note: All LP problems satisfy the weak and strong duality prop-

erties. The weak duality actually follows from the strong duality.

However, we state them separately for many other optimisation

problems satisfy the weak duality but not the strong duality. For

integer programming, for example, it is possible to find several

different types of dual problems which give bounds on the opti-

mal objective value of the primal problem but do not necessarily

give the same optimal objective value.
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3.4 The Complementary Slackness

An important result about dual variables is that at optimality

for the primal and dual LPs, a dual variable will be zero if the

corresponding primal constraint is not “active” or “binding”, i.e.

there is some slack or surplus on that constraint.4

Theorem 6

Let x be a feasible solution to the primal LP (P) and y be a

feasible solution to the dual LP (D). Both solutions x and y are

optimal to the primal (P) and dual (D), respectively, if and only

if they satisfy the following equalities

(cT − yTA)x = 0 and yT (b−Ax) = 0. (2)

Proof

For any feasible solution x to the primal (P) and any feasible

solution y to the dual (D), we have in the proof of Theorem 2

cTx ≥ (yTA)x

= yT (Ax)

≥ yTb

= bTy. (3)

Theorem 4 implies that x and y are optimal to the primal (P)

and dual (D), respectively, if and only if cTx = bTy, i.e. the two

inequalities in (3) are satisfied at equality. Those two equalities

hold if and only if

cTx = yTAx and yTAx = yTb,

4The inequality constraint is not satisfied at equality.
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which is exactly (2). �

Note: Since

cT − yTA ≥ 0T and x ≥ 0,

the first equation in (2) is equivalent to

(cj − yTAj)xj = 0, ∀j = 1, . . . , n. (4)

This means that for each j we have xj = 0 or cj − yTAj = 0.

Similarly, the second equation in (2) is equivalent to

yi(b−Ax)i = 0, ∀i = 1, . . . ,m. (5)

This means that for each i we have yi = 0 or (b−Ax)i = 0.

Example 6.

Consider again the primal and its dual in Example 2.

Recall that the optimal bfs to the primal is (x∗1, x
∗
2) = (0, 1.4) with

zmin = 1.4 and the optimal bfs to the dual is (y∗1, y
∗
2) = (0.2, 0)

with wmax = 1.4.

In the primal LP, the first constraint is binding (2x∗1+5x∗2 = 2×0+

5× 1.4 = 7), and the corresponding dual variable is y∗1 = 0.2 > 0.

The second constraint is not binding (x∗1+4x∗2 = 0+4×1.4 = 5.6 >

2), and the corresponding dual variable is y∗2 = 0. So Eqns. (5)

hold.

In the dual LP, the first constraint is not binding (2y∗1 + y∗2 = 2×

0.2+0 = 0.4 < 3), and the corresponding primal variable is x∗1 = 0.

The second constraint is binding (5y∗1+4y∗2 = 5×0.2+4×0 = 1),

and the corresponding primal variable is x∗2 = 1.4 > 0. Hence

Eqns. (4) hold.

12



3.5 Interpretation of the Primal-Dual Problems

A good way to interpret the primal-dual pair is to consider a pair

of competing businesses as follows.

The Primal LP: Firm A aims to produce 7kg of gold and 2kg of

nickel to meet a contract. Each tonne of ore from mine 1 yields

2kg of gold and 1kg of nickel, whilst each tonne of ore from mine 2

yields 5kg of gold and 4kg of nickel. Mining one tonne from mine

1 costs $300, but costs $100 from mine 2. The objective of firm

A is to minimise the cost of producing enough gold and nickel to

meet the contract.

The problem can be summarised in the table shown below.

Gold Nickel Cost
(kg/tonne) (kg/tonne) ($100/tonne)

Mine 1 2 1 3

Mine 2 5 4 1

Demand 7 2
(kg)

Denote by xi the amount (tonnes) of ore mined from mine i, i =

1, 2. This leads to the primal LP shown in Example 2.

min z = 3x1 + x2

s.t. 2x1 + 5x2 ≥ 7

x1 + 4x2 ≥ 2

x1, x2 ≥ 0
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The Dual LP: Now suppose that in the market there exists an-

other firm, say B, which sells gold and nickel.5 Firm B happens

to know everything about firm A’s operation costs and tries to

set the selling prices ($100/kg) y1 and y2 of gold and nickel, re-

spectively, for firm A. The objective of firm B is to maximise the

revenue from the sale of 7kg of gold plus 2kg of nickel. Firm B

knows that firm A will dig out their own minerals if it is cheaper

than buying off firm B. To avoid the situation that the selling

price is higher than the cost of mining from mine 1 and 2, firm B

shall set the price of 2kg of gold plus 1kg of nickel no greater than

$300 and that of 5kg of gold plus 4kg of nickel no greater than

$100. This leads to the dual LP shown in Example 2.

max w = 7y1 + 2y2

s.t. 2y1 + y2 ≤ 3

5y1 + 4y2 ≤ 1

y1, y2 ≥ 0

Hence, the strong duality implies that the sales revenues that firm

B can maximise is exactly the same as the mining cost that firm

A can minimise.

Now let’s see the complementary slackness in action. Because

mine 2 is obviously much better than mine 1, in the primal opti-

mal solution we shall have x1 = 0 and thus x2 = max{75 ,
2
4} = 1.4.6

Since the second constraint in the primal is not binding, in the

dual optimal solution we have y2 = 0, which means that firm B

5We suppose that only firm A and B exist in the market and this is a two-person game.
6Hence, the second constraint in the dual is binding.
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would charge nothing for nickel. This seems quite counterintu-

itive, but arises because there is no “rest of the world.” If firm

A doesn’t buy the nickel, firm B can’t sell it anywhere else and

hence it is of zero value to them.

3.6 Remarks on Primal-Dual Problems

1. Dual Theorem: If an optimal solution exists for either the

primal or the dual problem, then an optimal solution exists

for the other one and both objective values are the same.

2. An m × n primal constraint matrix yields an n × m dual

constraint matrix. For each primal (or dual) variable, there

is a corresponding dual (or primal) constraint and vice versa.

3. A urs variable in the primal (or dual) gives a corresponding

equality constraint in the dual (or primal) and vice versa.

4. If the primal (or dual) is unbounded, the dual (or primal) is

infeasible.

5. If the primal (or dual) is infeasible, the dual (or primal) may

be either unbounded or infeasible.

6. Given the primal optimal basis, we can get the dual optimal

solution y = (cT
B
B−1)T , which is an m-dimensional vector

called the dual vector.7 The information about this vector

can be obtained from the reduced-cost row (i.e. row 0) of the

7The dual vector is exactly the primal Simplex multiplier introduced in the previous
chapter.
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primal optimal Simplex tableau (in the columns correspond-

ing to the primal initial basis).8 At the primal optimal

solution, the values of cT
B
B−1 is called the shadow prices.

For i = 1, . . . ,m, the ith constraint of the primal is associ-

ated with the ith shadow price, which represents the change

in the objective function value for a unit change in the rhs of

the ith constraint.9 Note that some of these prices might be

zero.

7. For any pair of primal and dual LPs and any pair of the pri-

mal and dual feasible solutions, the objective function value

of the maximisation problem is always less than or equal to

that of the minimisation problem. At the optimal solutions

to both problems, the objective value of the maximisation

problem will equal that of the minimisation one. This re-

sult can be used to estimate the optimal objective value of

an intractable optimisation problem by judicious selection of

feasible solutions to the primal and dual. Then the range in

which the optimal objective value lies can be yielded.

8Please refer to page 5 in Lecture Note – Part 5 and page 4 in Lecture Note – Part 6.
9
z = cT

B
B−1b for the selected basis xB.
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Example 7.

Consider the following LP:

min z = 5x1 + 2x2

s.t. x1 − x2 ≥ 3

2x1 + 3x2 ≥ 5

x1, x2 ≥ 0

Its dual LP is

max w = 3y1 + 5y2

s.t. y1 + 2y2 ≤ 5

−y1 + 3y2 ≤ 2

y1, y2 ≥ 0

A feasible solution to the primal is (x1, x2) = (3, 0) with z = 15,

and a feasible solution to the dual is (y1, y2) = (3, 1) with w = 14.

This indicates that the optimal value of both objective functions

lies between 14 and 15. As this range is narrow, both feasible

solutions are near optimal.

Example 8.

Consider the following LP:

max z = x1 + 2x2 + 3x3 − x4

s.t. x1 + 2x2 + 3x3 = 15

2x1 + x2 + 5x3 = 20

x1 + 2x2 + x3 + x4 = 10

x1, x2, x3, x4 ≥ 0

This LP currently has no initial basis and could be solved with

the two-phase Simplex method by adding the artificial variables
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x5 into the first constraint and x6 into the second one. Starting

with the initial basis (x5, x6, x4), we can obtain the final optimal

tableau shown below. Notice that the two columns corresponding

to x5 and x6 are kept for further purposes although they shall be

eliminated after phase-I Simplex procedure.

basis x1 x2 x3 x4 x5 x6 rhs

z 0 0 0 1 1 0 15

x2 0 1 0 1
6

1
2 -13

5
2

x3 0 0 1 -12
1
2 0 5

2

x1 1 0 0 7
6 -32

2
3

5
2

Now please refer to page 5 in Lecture Note – Part 5 and page 4 in

Lecture Note – Part 6. The vector we obtain from the reduced-

cost row corresponding to initial basis xT
B0

= (x5, x6, x4) is (1, 0, 1),

which is (cT
B
B−1−cT

B0
).10 The dual optimal solution (y∗1, y

∗
2, y

∗
3) =

cT
B
B−1 is therefore (1, 0, 1) + (0, 0,−1) = (1, 0, 0). The optimal

objective value of the dual, whose objective function is “min w =

15y1 + 20y2 + 10y3”, equals the optimal objective value of the

primal, equalling 15.

10It is (cT
B
B−1 − cT

B0
) rather than cT

B
B−1 because cT

B0
is not a zero vector in the

considered LP model.
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4 The Dual Simplex Method

The Simplex method we have used (which we could now refer to

as the primal Simplex method) finds a series of solutions, each

of which satisfies the feasibility conditions, until it reaches one

which also satisfies the optimality condition. The dual Simplex

method finds a series of solutions, each of which satisfies the primal

optimality condition, until it reaches one which satisfies the primal

feasibility conditions. In some situations that finding an initial bfs

as usual may not be possible, we need to utilise the dual Simplex

method, which maintains dual feasibility (equivalent to primal

optimality) while working towards primal feasibility (equivalent

to dual optimality).

Hence, the dual Simplex method can also be used to recover primal

feasibility in certain circumstances, such as in sensitivity analysis

and parametric programming. The implementation of the dual

Simplex algorithm is actually simple. We use the existing primal

Simplex tableau and apply the entering and leaving rules in reverse

order, i.e. work out the leaving variable first and then find the

entering variable.

We will consider two types of applications of the dual Simplex

method. In the first example, we’ll illustrate the algorithm to

obtain an initial bfs that could be difficult to obtain using the

primal Simplex method. In the second example, we’ll use the

dual Simplex method to recover the feasibility.
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4.1 Generating an Initial bfs

Example 9.

Suppose that we aim to solve the following LP:

max z = 4x1 + 5x2

s.t. 2x1 + 3x2 ≤ 6

3x1 + x2 ≥ 3

x1, x2 ≥ 0.

We first convert the general form to the standard form, giving

max z = 4x1 + 5x2

s.t. 2x1 + 3x2 + s1 = 6

3x1 + x2 − s2 = 3

x1, x2, s1, s2 ≥ 0.

Since selecting an initial basis of (s1, s2) will end up with s2 = −3,

which is infeasible, we would not be able to proceed with the Sim-

plex method. Apart from introducing the artificial variables and

applying the two-phase Simplex or big-M method, this issue can

be tackled by the dual Simplex method (actually much easier).

Now we will ignore the infeasibility in setting up the initial Sim-

plex tableau. Thus, the second constraint can be rewritten in the

form

−3x1 − x2 + s2 = −3.

And the initial dual Simplex tableau is shown below.
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basis x1 x2 s1 s2 rhs

z −4 −5 0 0 0

s1 2 3 1 0 6

s2 −3 −1 0 1 −3

In order to recover primal feasibility, we need to determine the

variable that leaves the basis – this is the basic variable that has

the most negative value. If there is no such variable, then primal

feasibility is recovered and the dual Simplex procedure stops.

Since the current basic variable with the most negative value is s2,

it will leave the basis. The entering variable is then determined by

the dual ratio test, and the ratio is calculated along the leaving-

variable row, i.e. the pivot row. The dual ratio is defined as the

absolute value of the reduced cost divided by the corresponding

entry in the pivot row with negative value. If there is no entry

with negative value in the pivot row, the LP is unbounded in its

dual and thus infeasible (in the primal). Otherwise, we choose the

variable with the minimum ratio as the entering variable. We

can append the ratio row to the dual Simplex tableau as follows.

basis x1 x2 s1 s2 rhs

z −4 −5 0 0 0

s1 2 3 1 0 6

s2 −3 −1 0 1 −3

ratio |−4
−3 | |

−5
−1 |
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Since we have min{|−4
−3 |, |

−5
−1 |} = |

−4
−3 |, the entering variable is x1.

We now do the pivoting on the element at the intersection of the

leaving-variable row (pivot row) and the entering-variable column

(pivot column) with EROs as shown below.

basis x1 x2 s1 s2 rhs

z 0 −11
3 0 −4

3 4 R′
0 ← R0 + 4R′

2

s1 0 7
3 1 2

3 4 R′
1 ← R1 − 2R′

2

x1 1 1
3 0 −1

3 1 R′
2 ← −

1
3R2

Notice that the primal feasibility is recovered as all the basic vari-

ables are nonnegative. Hence, we terminate the dual Simplex

procedure and switch to the primal Simplex procedure as shown

below.

basis x1 x2 s1 s2 rhs

z 0 −11
3 0 −4

3 4

s1 0 7
3 1 2

3 4

x1 1 1
3 0 −1

3 1

z 0 0 11
7 −2

7
72
7

x2 0 1 3
7

2
7

12
7

x1 1 0 −1
7 −

3
7

3
7

z 0 1 2 0 12

s2 0 7
2

3
2

1 6

x1 1 3
2

1
2 0 3
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Since all the reduced costs are nonnegative, this is the final optimal

tableau. The optimal solution is (x1, x2, s1, s2) = (3, 0, 0, 6) with

the optimal objective value zmax = 12.

The Dual Simplex Algorithm in Tabular Form

Assume that we have an initial dual Simplex tableau, where some

basic variable(s) have negative value(s). Then the following three-

step procedure, called the dual Simplex algorithm, will find a bfs

for the considered LP in standard form.

Step 1. (Leaving) If b̂ = B−1b ≥ 0, then STOP – a bfs is found.

Otherwise, select the leaving variable xs whose rhs b̂s is the

most negative among b̂ = B−1b = (̂b1, b̂2, · · · , b̂m).

Step 2. (Entering) Label the entries of the row corresponding to the

leaving variable xs by âsj, j = 1, 2, . . . , n.

If âsj ≥ 0, ∀j = 1, 2, . . . , n, then STOP – the considered LP

(the primal) is infeasible.

Otherwise, find

t = arg min
1≤j≤n

{∣∣∣ ĉj
âsj

∣∣∣ : âsj < 0
}
.

Step 3. (Pivoting) Update the tableau by pivoting on âst, i.e. per-

form EROs on the tableau to get a 1 in the pivot position,

and 0s above and below it. GO TO Step 1.

4.2 Recovering the Feasibility

If at some iteration of primal Simplex method we arrive at the

rhs b̂ = B−1b ≥ 0, some components of which are zeros, then to
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avoid the degeneracy the choice of the leaving variable may lead to

a violation of feasibility. In this case, the dual Simplex procedure

can be applied to recover the feasibility of the basic solution.

Example 10.

Suppose that we aim to solve the following LP:

max z = 0.1x1 + 0.15x2

s.t. x1 + x2 ≤ 100000

−3
4x1 +

1
4x2 ≤ 0

−3
2x1 + x2 ≤ 0

x1, x2 ≥ 0

Its standard form is shown as below.

max z = 0.1x1 + 0.15x2

s.t. x1 + x2 + s1 = 100000

−3
4x1 +

1
4x2 + s2 = 0

−3
2x1 + x2 + s3 = 0

x1, x2, s1, s2, s3 ≥ 0

An obvious initial basis is xB = (s1, s2, s3), and the initial tableau

is shown as below.

basis x1 x2 s1 s2 s3 rhs

z - 1
10 - 3

20 0 0 0 0

s1 1 1 1 0 0 100000

s2 -3
4

1
4

0 1 0 0

s3 -32 1 0 0 1 0
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Since x2 has the most negative reduced cost, it is the entering

variable. Notice that the values of the basic variables s2 and s3 are

0s. If we choose s2 or s3 as the leaving variable, the objective value

at the next Simplex tableau will remain the same. Then it will

cause the degeneracy and even more terrible cycling. Hence, we

turn to try leaving s1. Then the pivoting results in the following

Simplex tableau.

basis x1 x2 s1 s2 s3 rhs

z 1
20 0 3

20 0 0 15000

x2 1 1 1 0 0 100000

s2 -1 0 -14 1 0 -25000

s3 -52 0 -1 0 1 -100000

As both values of the basic variables s2 and s3 are negative, the

current basic solution is infeasible. Now we need to utilise the dual

Simplex algorithm to recover the feasibility. Hence, we select s3 as

the leaving variable, and do the dual ratio test min
{∣∣∣

1

20

−
5

2

∣∣∣,
∣∣∣

3

20

−1

∣∣∣
}

to determine the entering variable. Thus the entering variable is

x1. Then the pivoting on the pivot element leads to the following

tableau.
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basis x1 x2 s1 s2 s3 rhs

z 0 0 13
100 0 1

50 13000

x2 0 1 3
20 0 -25 15000

s2 0 0 3
5 1 2

5 60000

x1 1 0 2
5 0 -25 40000

Since all the rhs values are nonnegative, we can terminate dual

Simplex procedure. As all the reduced costs are nonnegative, this

is the final optimal tableau.

Hence, the optimal solution is (x1, x2, s1, s2, s3) = (40000, 15000,

0, 60000, 0) with the optimal objective value zmax = 13000.

Further reading: Section 6.5–6.11 in the reference book “Operations Research: Appli-
cations and Algorithms” (Winston, 2004)
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