
Lecture Notes – Part 7

Sensitivity Analysis

1 Introduction

The real world is usually more complicated than the sorts of op-
timisation problems we formulate. Utilising mathematical opti-
misation modelling to describe the reality would need approxi-
mations. One of the significant approximations is the linearity 
assumption. Another important approximation comes from the 
data which we put into the LP model because we may be un-
certain about them. Our knowledge of the relevant parameters 
such as the coefficients of objective function c, the constraint ma-

trix A and the rhs b, in the considered problem may be imprecise, 
thus enforcing the approximations of their values. Furthermore, in 
many applications the values of an LP’s parameters may change.

Sensitivity analysis is a systematic study of how sensitive the LP’s 
optimal solution is to (small) changes in the LP’s parameters, i.e. 
how changes in some parameters affect the optimal solution. If a 
parameter changes, sensitivity analysis often makes it unnecessary 
to solve the considered LP problem again.1 A knowledge of sen-
sitivity analysis often enables the analyst to determine from the 
original optimal solution how the changes in an LP’s parameters

1Solving an LP with thousands of variables and constraints again would be a chore.
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change the optimality. Sensitivity analysis in LP is presented to

give answers to questions of the following forms:

1. If the objective function changes, how does the optimal so-

lution change?

2. If the amount of resources available changes, how does the

optimal solution change?

3. If an additional constraint is added to the LP, how does the

optimal solution change?

Usually, sensitivity analysis is performed on “individual” vari-

ables, i.e. in each specific analysis only one parameter of the LP

changes and all the other parameters remain fixed at their original

values.

The types of sensitivity analysis to be introduced in this chapter

include:

1. changes in the coefficients of the objective function, cj, ∀j =

1, . . . , n;

2. changes in the rhs of constraints, bi, ∀i = 1, . . . ,m;

3. changes in the coefficients of the constraints, aij, ∀i = 1, . . . ,m

and j = 1, . . . , n;

4. addition of a new constraint;

5. addition of a new variable.

2



To learn how to perform sensitivity analysis on an arbitrary

LP, we recall the algebraic Simplex tableau. Assume that in an

arbitrary LP in standard form:

min (or max) z = cTx

s.t. Ax = b

x ≥ 0,

where b ≥ 0, we have the optimal bfs x∗T = (xT
N
|xT

B
) and the

following final optimal Simplex tableau.

basis xN xB rhs

z∗ cT
B
B−1N− cT

N
0T cT

B
B−1b

xB B−1N I B−1b

The optimal tableau gives that

ĉT
N
= cT

B
B−1N− cT

N
≤ (or ≥) 0T ;

xB = B−1b ≥ 0;

xN = 0;

z∗ = cT
B
B−1b.

The first inequality is the optimality condition.2 The second

inequality and the third equality give a basic solution the feasi-

bility conditions.3

2If any reduced cost were positive (or negative), then the Simplex procedure would
enter the corresponding nonbasic variable to the basis and improve the objective value.

3If any basic variable in a basic solution had been negative, this basic solution would
not have been a bfs.
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Later we will show type by type how to perform sensitivity

analysis using the optimality condition and feasibility conditions.

In the preceding chapter, we realised that the calculations of the

basic matrix inverse B−1 and the Simplex multiplier cT
B
B−1 are

the kernel of the Simplex procedure. Actually, they are criti-

cal to sensitivity analysis as well. Assume that the initial bfs

is (xT
N0
|xT

B0
), and recall the derivation of the revised Simplex

method. Then the above final optimal Simplex tableau can easily

be revised as follows.

basis xN0
xB0

rhs

z∗ cT
B
B−1N0 − cT

N0
cT
B
B−1 − cT

B0
cT
B
B−1b

xB B−1N0 B−1 B−1b

Therefore, once the final optimal tableau is provided, we can ob-

tain without calculations B−1 and cT
B
B−1 from the columns cor-

responding to the initial basis xB0
.

2 Change in the Objective Coefficient

How we approach a change in a coefficient of the objective function

depends on whether the coefficient is associated with a basic or a

nonbasic variable in the optimal bfs.

2.1 Nonbasic Variable

Consider a change in the objective coefficient of a nonbasic vari-

able, cj ∈ cN in the optimal bfs of a minimisation (or maximi-
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sation) LP. The only impact this change can have is that if the

reduced cost of xj becomes positive (or negative) we can improve

the objective value by entering xj into the basis. If the new re-

duced cost remains nonpositive (or nonnegative), the change has

no impact on the optimal bfs. Denote by ∆ the change in cj, so

the new objective coefficient for xj is

c′j = cj +∆.

Notice that from the Simplex algebraic formulae this change only

affects the current reduced cost ĉj. Then we have its new reduced

cost ĉ′j as follows:

ĉ′j = cT
B
B−1Aj − c′j = cT

B
B−1Aj − (cj +∆)

= (cT
B
B−1Aj − cj)−∆

= ĉj −∆.

If this value is nonpositive (or nonnegative), then the current basis

is still optimal. Thus, the optimal bfs will be unchanged if

∆ ≥ (or ≤) ĉj.

Example 1.

Consider the following LP in standard form:

min z = −x1 − 2x2

s.t. −2x1 + x2 + x3 = 2

−x1 + 2x2 + x4 = 7

x1 + x5 = 3

x1, x2, x3, x4, x5 ≥ 0
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with the final optimal tableau:

basis x1 x2 x3 x4 x5 rhs

z 0 0 0 -1 -2 -13

x2 0 1 0 1

2

1

2
5

x1 1 0 0 0 1 3

x3 0 0 1 -1
2

3

2
3

The final tableau shows that the optimal basis is xB = (x2, x1, x3)
T .

Besides, we can obtain the following information from the LP in

standard form and the final tableau.

ĉT
N
= cT

B
B−1N− cT

N
= (−1,−2),

B−1N =




1

2

1

2

0 1

−1

2

3

2


 , B−1b =



5

3

3


 ,

B−1 =



0 1

2

1

2

0 0 1

1 −1

2

3

2


 ,

cT
B
B−1 = (0,−1,−2).

Suppose now that in this cost minimisation problem there is an

extra charge incurred by the nonbasic variable x4, whose original

price (objective coefficient) is zero. This incurred rate is $∆/unit

of x4. So the new objective function is −x1 − 2x2 +∆x4, i.e. the
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objective coefficient of x4 is increased from c4 = 0 to c′4 = (0+∆).

Now we aim to perform sensitivity analysis to find the range of ∆

so that the optimal basis is still xB = (x2, x1, x3)
T . Since x4 is a

nonbasic variable in the minimisation LP, the value ∆ must keep

the corresponding new reduced cost ĉ′4 ≤ 0, i.e.

ĉ′4 = cT
B
B−1A4 − c′4

= cT
B
B−1A4 − (c4 +∆)

= (cT
B
B−1A4 − c4)−∆

= ĉ4 −∆

= −1−∆ ≤ 0.

Hence, ∆ ≥ −1.

In other words, if the new objective coefficient of x4 satisfies ∆ ≥

−1, i.e. c′4 = 0 + ∆ ≥ −1, the current basis is still optimal.

2.2 Basic Variable

Suppose now that

c′
B
= cB +∆cB,

i.e. there is a change in the objective coefficient of some basic

variable. It is obvious that this change won’t alter the reduced

costs of the basis, which will remain to be zeros. However, we

must check all reduced costs of the nonbasic variables to observe

whether any would be eligible to enter the basis.

The new reduced cost for any nonbasic variable xj is

ĉ′j = (cB +∆cB)
TB−1Aj − cj
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= (cT
B
B−1Aj − cj) + (∆cB)

TB−1Aj

= ĉj + (∆cB)
TB−1Aj.

If in the minimisation (or maximisation) LP these values are all

nonpositive (or nonnegative), i.e.

ĉj + (∆cB)
TB−1Aj ≤ (or ≥) 0,

(∆cB)
TB−1Aj ≤ (or ≥) − ĉj

for any nonbasic variable xj ∈ xN, the current basis is still opti-

mal. The above inequalities can be presented by a vector inequal-

ity shown below.

ĉ′T
N

= ĉT
N
+(∆cB)

TB−1N ≤ (or ≥) 0T ⇔ (∆cB)
TB−1N ≤ (or ≥) −ĉT

N

Example 2.

Consider the LP in Example 1. Now we aim to find by how much

the objective coefficient of x3 can be changed without altering the

optimal basis xB.

Denote the new objective coefficient of x3 by c′3 = c3 + ∆. Then

the new objective coefficient vector of basis is cT
B
+ (0, 0,∆), i.e.

∆cB = (0, 0,∆)T . Since x3 is a basic variable in the minimisa-

tion LP, the value ∆ must keep the reduced cost of all nonbasic

variables nonpositive, i.e.
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ĉ′T
N

= c′T
B
B−1N− cT

N

=
(
cT
B
+ (0, 0,∆)

)
B−1N− cT

N

= (cT
B
B−1N− cT

N
) + (0, 0,∆)B−1N

= ĉT
N
+ (0, 0, ∆)




1

2

1

2

0 1

−1

2

3

2




= (−1, −2) + (−∆

2
, 3∆

2
)

= (−1− ∆

2
, −2 + 3∆

2
) ≤ 0

Hence, − 2 ≤ ∆ ≤
4

3
.

3 Change in the Right Hand Side

Suppose now that there is a change in the rhs of a constraint. This

will affect the values of the basic variables, and hence also the

optimal objective value. That is, the rhs column in the Simplex

tableau is affected. Hence, the feasibility rather than optimality

is affected.4

Denote the new rhs by

b′ = b+∆b.

The value ∆b must keep the corresponding new basic solution

feasible, i.e. x′

B
≥ 0. Hence, whether a minimisation or maximi-

sation LP is considered, the value ∆b must satisfy the inequality

4You can notice this from the aforementioned Simplex algebraic formulae.
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x′

B
= B−1b′

= B−1(b+∆b)

= B−1b+B−1∆b ≥ 0,

that is,

B−1b ≥ −B−1∆b.

Example 3.

Consider the LP in Example 1. Now we aim to find by how much

the rhs of the second constraint can be changed without altering

the optimal basis xB.

Let the new rhs be

b′ = b+∆b = b+ (0,∆, 0)T .

The value ∆ must keep the corresponding new basic solution x′

B
≥

0, i.e. it must satisfy the inequality

x′

B
= B−1b′

= B−1
(
b+ (0,∆, 0)T

)

= B−1b+B−1(0,∆, 0)T

= (5, 3, 3)T +



0 1

2

1

2

0 0 1

1 −1

2

3

2







0

∆

0




= (5, 3, 3)T + (∆
2
, 0, −∆

2
)T

= (5 + ∆

2
, 3, 3− ∆

2
)T ≥ 0

Hence, −10 ≤ ∆ ≤ 6.
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4 Change in a Column of the Constraint Ma-

trix

There is no simple way to perform sensitivity analysis for discrete

changes in the coefficients of the constraint equations if the con-

straint coefficients to be changed are associated with a basic vari-

able. This is because we would need to recalculate B−1. However,

a change in the constraint coefficient associated with a nonbasic

variable is relatively easy to deal with.

A change in the constraint coefficient associated with a nonbasic

variable xj will affect the row-operated jth column of the Simplex

tableau and the corresponding reduced cost. Suppose that the

column Aj is replaced with A′

j = Aj +∆Aj, and the correspond-

ing variable xj is nonbasic in the optimal bfs. The optimal basis

will remain unchanged if the new reduced cost ĉ′j is kept nonpos-

itive (or nonnegative) for a minimisation (or maximisation) LP,

i.e. the value ∆Aj satisfies the inequality

ĉ′j = cT
B
B−1A′

j − cj = cT
B
B−1(Aj +∆Aj)− cj

= cT
B
B−1Aj + cT

B
B−1∆Aj − cj

= (cT
B
B−1Aj − cj) + cT

B
B−1∆Aj

= ĉj + cT
B
B−1∆Aj ≤ (or ≥) 0,

that is,

cT
B
B−1∆Aj ≤ (or ≥)− ĉj.
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Example 4.

Consider the LP in Example 1. We want to find by how much the

coefficient of x5 in the third constraint can be changed without

altering the optimal basis xB.

Denote the new column vector corresponding to x5 in A by

A′

5 = A5 + (0, 0,∆)T .

Since x5 is a nonbasic variable in the optimal bfs of the considered

minimisation LP, the value ∆ must keep the new reduced cost of

x5 nonpositive, i.e.

ĉ′5 = cT
B
B−1A′

5 − c5

= cT
B
B−1

(
A5 + (0, 0,∆)T

)
− c5

= (cT
B
B−1A5 − c5) + cT

B
B−1(0, 0,∆)T

= ĉ5 + (0,−1,−2)(0, 0,∆)T

= −2 − 2∆ ≤ 0.

Hence, ∆ ≥ −1.

Instead of standard form, we will consider for the next two sections

an LP in general form:

min (or max) z = cTx

s.t. Ax ≥ (or ≤) b

x ≥ 0.

and let xB be an optimal basis for its corresponding standard

form.
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5 Addition of a New Constraint

Example 5.

Consider the following maximisation LP

max z = 5x1 + 3x2

s.t. x1 + x2 ≤ 10

x1 ≤ 4

x1, x2 ≥ 0

with the following final optimal tableau, where s1 and s2 are slack

variables in the first and second constraints, respectively.

basis x1 x2 s1 s2 rhs

z 0 0 3 2 38

x2 0 1 1 -1 6

x1 1 0 0 1 4

The optimal basis is xB = (x2, x1) = (6, 4).

Again from the LP in standard form and the final optimal tableau,

we can have the following information:

B−1 =

(
1 −1

0 1

)
,

cT
B
B−1 = (3, 2).

Suppose now that a new constraint x1+3x2 ≤ 15 is added to give

the following new LP.
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max z = 5x1 + 3x2

s.t. x1 + x2 ≤ 10

x1 ≤ 4

x1 + 3x2 ≤ 15

x1, x2 ≥ 0

It is easy to check whether the optimal basis for the original LP

is still optimal to the new LP.5 Since the original optimal basis

xB = (x2, x1) = (6, 4) does not satisfy the additional constraint,

the optimal solution to the new LP will change. Then we aim

to find an optimal solution for the new LP based on the original

xB and the related information obtained from the final tableau of

the original LP. This may need to apply the dual Simplex method

which will be introduced in the following chapter.

After rewriting the additional constraint by adding a slack variable

as follows

x1 + 3x2 + s3 = 15,

we have the new constraint row vector

(1, 3, 0, 0, 1)

with a rhs constant term equal to 15. However, in order to create a

Simplex tableau for the new LP by adding this new constraint row

to the final tableau of the original LP we need to rearrange it to

satisfy the canonical form, i.e. the requirement that the coefficient

of the newly introduced basic variable is 1 and the coefficients of all

other basic variables are 0s. To obtain the desired new constraint
5Obviously, the optimal objective value of the new LP will not be better than that of

the original LP.
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row, we use the first two constraint rows of the final tableau and

perform EROs as we have seen in the Simplex procedure:

x2 + s1 − s2 = 6 ⇔ x2 = 6− s1 + s2,

x1 + s2 = 4 ⇔ x1 = 4− s2.

Then the new constraint becomes

x1 + 3x2 + s3 = (4− s2) + 3(6− s1 + s2) + s3 = 15

⇔ −3s1 + 2s2 + s3 = −7.

Now we add this derived new constraint row into the final tableau

of the original LP. Notice that there is a “negative rhs” and the

dual Simplex method must be used to recover feasibility.6 Since

this basic solution is infeasible, s3 must leave the basis and s1 will

enter the basis as shown below.

basis x1 x2 s1 s2 s3 rhs

z 0 0 3 2 0 38

x2 0 1 1 -1 0 6

x1 1 0 0 1 0 4

s3 0 0 -3 2 1 -7

z 0 0 0 4 1 31 R′

0 ← R0 + R3

x2 0 1 0 -1
3

1

3

11

3
R′

1 ← R1 − R′

3

x1 1 0 0 1 0 4

s1 0 0 1 -2
3

-1
3

7

3
R′

3 ← −
1

3
R3

6We skip the detailed dual Simplex procedure at this stage.

15



Since all the reduced costs are nonnegative, the optimal bfs to the

new LP is

(x1, x2) = (4,
11

3
) with zmax = 31.

6 Addition of a New Variable

Suppose that added to the LP is a new variable xj with the ob-

jective coefficient cj and a column in the constraint matrix Aj. If

we consider a minimisation (or maximisation) LP and

ĉj = cT
B
B−1Aj − cj ≤ (or ≥) 0,

then xj is put in the nonbasis and xB remains the optimal basis.

Otherwise, we need to enter the new variable xj into the basis,

and the optimal bfs will change.

Example 6.

Consider the LP in Example 5. Suppose now that a new variable

x3 is added to yield the following new LP:

max z = 5x1 + 3x2 + 8x3

s.t. x1 + x2 + x3 ≤ 10

x1 + 2x3 ≤ 4

x1, x2, x3 ≥ 0

Hence, we have c3 = 8 and A3 = (1, 2)T .

Since the corresponding reduced cost

ĉ3 = cT
B
B−1A3 − c3 = (3, 2)

(
1

2

)
− 8 = −1
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is negative, the current basis xB is no longer optimal and x3 shall

be entered into the basis. To create a Simplex tableau for the new

LP, the corresponding constraint column Â3 to be added into the

original final tableau is

Â3 = B−1A3 =

(
1 −1

0 1

)(
1

2

)
=

(
−1

2

)
.

The Simplex procedure is now continued as follows.

basis x1 x2 x3 s1 s2 rhs

z 0 0 -1 3 2 38

x2 0 1 -1 1 -1 6

x1 1 0 2 0 1 4

z 1

2
0 0 3 5

2
40 R′

0 ← R0 +R′

2

x2
1

2
1 0 1 -1

2
8 R′

1 ← R1 +R′

2

x3
1

2
0 1 0 1

2
2 R′

2 ←
1

2
R2

All the reduced costs are nonnegative, so this is the final optimal

tableau. The optimal bfs occurs at

x = (x1, x2, x3)
T = (0, 8, 2)T with zmax = 40.

7 A Comprehensive Example

Now consider the following LP:
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max z = 10x1 + 7x2 + 6x3

s.t. 3x1 + 2x2 + x3 ≤ 36

x1 + x2 + 2x3 ≤ 32

2x1 + x2 + x3 ≤ 22

x1, x2, x3 ≥ 0

with the final optimal Simplex tableau for the corresponding LP

in standard form:

basis x1 x2 x3 s1 s2 s3 rhs

z 3 0 0 1 0 5 146

x2 1 1 0 1 0 -1 14

s2 -2 0 0 1 1 -3 2

x3 1 0 1 -1 0 2 8

Again, we can obtain the following information from the LP in

standard form and the final tableau.

ĉT
N
= cT

B
B−1N− cT

N
= (ĉ1, ĉ4, ĉ6) = (3, 1, 5),

B−1N =




1 1 −1

−2 1 −3

1 −1 2


 , B−1b =



14

2

8


 ,

B−1 =




1 0 −1

1 1 −3

−1 0 2


 ,

cT
B
B−1 = (1, 0, 5).
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7.1 By how much can the objective coefficient of x1 be

changed without altering the optimal basis?

Note first that x1 is a nonbasic variable. Suppose that we change

its objective coefficient to c′1 = c1+∆. Then the new reduced cost

is

ĉ′1 = cT
B
B−1A1 − c′1

= cT
B
B−1A1 − (c1 +∆)

= (cT
B
B−1A1 − c1)−∆

= ĉ1 −∆

= 3−∆.

Since the considered problem is a maximisation LP, the current

basis xB remains optimal in the case of

3−∆ ≥ 0 ⇔ ∆ ≤ 3.

7.2 By how much can the objective coefficient of x2 be

changed without altering the optimal basis?

Since x2 is a basic variable, all the reduced costs will be affected

by changing its objective coefficient. So we need to check the

following reduced costs7:

ĉ′T
N

= (cB +∆cB)
TB−1N− cT

N
,

where ∆cB = (∆, 0, 0)T . This gives us

7Note that x2 is the first component in the basis xB = (x2, s2, x3).
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ĉ′T
N

=
(
cT
B
+ (∆, 0, 0)

)
B−1N− cT

N

= (cT
B
B−1N− cT

N
) + (∆, 0, 0)B−1N

= ĉT
N
− (∆, 0, 0)




1 1 −1

−2 1 −3

1 −1 2




= (3, 1, 5) + (∆,∆,−∆)

= (3 + ∆, 1 + ∆, 5−∆).

Since the considered problem is a maximisation LP, these reduced

costs must be nonnegative to keep the optimal basis, i.e. 3+∆ ≥ 0,

1 + ∆ ≥ 0 and 5−∆ ≥ 0. Hence we have

−1 ≤ ∆ ≤ 5.

Note that within this range the optimal basis stays the same, but

the optimal objective value would change. In the optimal bfs, we

have x2 = 14, which is not affected by increasing its objective

coefficient by ∆ within the range −1 ≤ ∆ ≤ 5. Thus the optimal

objective value will increase by 14∆.

7.3 By how much can the rhs of the first constraint be

changed without altering the optimal basis?

Let the new rhs be

b′ = b+ (∆, 0, 0)T

The value ∆ must keep the corresponding new basic solution x′

B
≥

0, i.e. it must satisfy the inequality
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x′

B
= B−1b′

= B−1
(
b+ (∆, 0, 0)T

)

= B−1b+B−1(∆, 0, 0)T

= B−1b+




1 0 −1

1 1 −3

−1 0 2






∆

0

0




= (14, 2, 8)T + (∆,∆,−∆)T

= (14 + ∆, 2 + ∆, 8−∆)T ≥ 0

Hence, we have −2 ≤ ∆ ≤ 8.

7.4 By how much can the coefficient of x1 in the first

constraint be changed without altering the optimal

basis?

Let the new column vector corresponding to x1 in A be

A′

1 = A1 + (∆, 0, 0)T .

Since x1 is a nonbasic variable for the maximisation LP, the value

∆ must keep the new reduced cost of x1 nonnegative, i.e.

ĉ′1 = cT
B
B−1A′

1 − c1

= cT
B
B−1

(
A1 + (∆, 0, 0)T

)
− c1

= (cT
B
B−1A1 − c1) + cT

B
B−1(∆, 0, 0)T

= ĉ1 + (1, 0, 5)(∆, 0, 0)T

= 3 + ∆ ≥ 0.

Hence, we have ∆ ≥ −3.

Further reading: Section 6.1–6.4 in the reference book “Operations Research: Appli-
cations and Algorithms” (Winston, 2004)
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