
Lecture Notes – Part 9

Unconstrained Nonlinear Programming

1 Introduction

Nonlinear programming (NLP) is somewhat more complicated 
than linear programming (LP). We start the discussion from the 
most simplified version – unconstrained NLP, i.e. NLP with no 
constraints. Assume that f(x) is a nonlinear function of vector 
x = (x1, x2, . . . , xn)T defined over the domain D ⊆ Rn. Consider 
an NLP problem

min
x∈D

(or max
x∈D

) f(x).

If D ≡ Rn, then we have an unconstrained NLP problem

min (or max) f(x),

where no constraints are placed on the decision variables x.

Although most of the content in this chapter is largely related to

calculus you may have learnt, we address more closely the question

of how to actually find an optimal solution instead of how to

recognise one.

To carefully specify what sort of NLP problems we will consider,

let’s start by discussing convexity for minimisation NLP (or con-

cavity for maximisation NLP).
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2 Convexity

In this section, we briefly consider what kind of situations could

make an optimisation problem particularly hard to solve. We will

need the following important definitions.

2.1 Global minimum

A point x∗ is called a global minimiser or a global minimum point

of a function f(x) if

x∗ ∈ D, and

f(x∗) ≤ f(x) for any x ∈ D.

The value f(x∗) is called a global minimum value of f(x).

Similarly defined is a strict global minimiser or a strict global

minimum point, where

f(x∗) < f(x) for any x ∈ D \ {x∗}.

2.2 Local minimum

A point x∗ is called a local minimiser or a local minimum point

of a function f(x) if

x∗ ∈ D,

and there exists an ε > 0 such that

f(x∗) ≤ f(x) for any x ∈ D satisfying

0 < ‖x− x∗‖ < ε.

The value f(x∗) is called a local minimum value of f(x).
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Similarly defined is a strict local minimiser or a strict local mini-

mum point, where

f(x∗) < f(x) for any x ∈ D satisfying

0 < ‖x− x∗‖ < ε.

It is possible for a function to have

• both global and local minimisers;

• neither global nor local minimisers;

• a local minimiser and yet no global minimiser;

• multiple global minimisers.

The basic notion of the solution techniques for the minimisation

NLP we will introduce later is to move from some solution “down-

hill” to a better solution. These methods are guaranteed to find

a local minimum, but in some cases there could be many different

local minima such that the same algorithm with different starting

points will end up with different local minima. And in most cases

we are not able to ensure if the obtained local minimum is the

global minimum.

Opposite to the convexity, global minimum and local minimum

for the minimisation NLP, the concavity, global maximum and lo-

cal maximum for the maximisation NLP can be similarly defined.

Now we limit ourselves to a specific type of NLP problems – min-

imising a convex function (or maximising a concave function) over

a convex set.
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2.3 Convex function

A function f(x) is called convex if for any two points (or vectors)

x1 ∈ D and x2 ∈ D and for any α ∈ [0, 1] we have

f
(

αx1 + (1− α)x2

)

≤ αf(x1) + (1− α)f(x2).

Function f(x) is called strictly convex if for any x1 6= x2 ∈ D and

for any α ∈ (0, 1) we have

f
(

αx1 + (1− α)x2

)

< αf(x1) + (1− α)f(x2).

Assume that f(x) has continuous second-order partial deriva-

tives. At each point x = (x1, x2, . . . , xn)
T , we denote by

∇f(x) =

(

∂f(x)

∂x1
,
∂f(x)

∂x2
, · · · ,

∂f(x)

∂xn

)T

the gradient of f(x) at point x, and by

∇2f(x) =















∂2f(x)
∂x2

1

∂2f(x)
∂x1∂x2

· · · ∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂x1

∂2f(x)
∂x2

2

· · · ∂2f(x)
∂x2∂xn

...
...

...
...

∂2f(x)
∂xn∂x1

∂2f(x)
∂xn∂x2

· · · ∂2f(x)
∂x2

n















the Hessian matrix for f(x) at point x. Note that the Hessian is a

symmetric matrix since if f(x) has second-order partial derivatives

at point x we have for 1 ≤ i, j ≤ n

∂2f(x)

∂xi∂xj
=

∂2f(x)

∂xj∂xi
.
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Definition. For each i = 1, . . . , n, the ith principal minor(s) of

an n×n matrix is the determinant of any i× i matrix obtained by

deleting (n − i) row(s) and the corresponding (n − i) column(s)1

of the matrix.

Example 1. For the matrix

A =

(

−2 −1

−1 4

)

.

The 1st principal minors are −2 and 4.

The 2nd principal minor is |A| = (−2)(4)− (−1)(−1) = −9.

For any matrix, the 1st principal minors are just the diagonal

entries of the matrix.

By applying the theorem stated below, the Hessian matrix can

be used to determine whether a function f(x) is convex.

Theorem 1. Suppose that f(x) has continuous second-order par-

tial derivatives at each point x = (x1, x2, . . . , xn)
T ∈ D. Then

f(x) is a convex function on D if and only if for each x ∈ D all

principal minors of its Hessian are nonnegative.

Example 2. The Hessian matrix of the function f(x) = x21 +

2x1x2 + x22 at any point x = (x1, x2) ∈ R2 is

∇2f(x) =

(

2 2

2 2

)

The 1st principal minors are 2 > 0 and 2 > 0. The 2nd principal

minor is 2 × 2 − 2 × 2 = 0. So, Theorem 1 shows that f(x) is a

convex function on R2.

1That is, if three rows 1, 3 and 4 are the deleted rows, then the corresponding three
columns to be deleted are columns 1, 3 and 4.
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2.4 Concave function

A function f(x) is called concave if for any two points (or vectors)

x1 ∈ D and x2 ∈ D and for any α ∈ [0, 1] we have

f
(

αx1 + (1− α)x2

)

≥ αf(x1) + (1− α)f(x2).

Function f(x) is called strictly concave if for any x1 6= x2 ∈ D

and for any α ∈ (0, 1) we have

f
(

αx1 + (1− α)x2

)

> αf(x1) + (1− α)f(x2).

Note:

• It is apparent that a function f(x) is (strictly) concave if and

only if the function −f(x) is (strictly) convex.

• If f(x) is a linear function, i.e. f(x) = cTx for some constant

vector c, then

f
(

αx1 + (1− α)x2

)

= αf(x1) + (1− α)f(x2).

Thus, linear functions are both convex and concave. But

they are neither strictly convex nor strictly concave.

Theorem 2. Suppose that f(x) has continuous second-order par-

tial derivatives at each point x = (x1, x2, . . . , xn)
T ∈ D. Then

f(x) is a concave function on D if and only if for each x ∈ D and

each k = 1, . . . , n all nonzero kth principal minors of its Hessian

matrix have the same sign as (−1)k.

Example 3. The Hessian of the function f(x) = −3x21+4x1x2−

2x22 at any point x = (x1, x2) ∈ R2 is

∇2(x) =

(

−6 4

4 −4

)
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The 1st principal minors are −6 < 0 and −4 < 0. The 2nd princi-

pal minor is (−6) × (−4) − (4) × (4) = 8 > 0. Theorem 2 shows

that f(x) is a concave function on R2.

Now we discuss the domain, i.e. feasible region, of the considered

objective function.

2.5 Convex set

Recall that the set S is called convex if for any two x1,x2 ∈ S and

any α ∈ (0, 1) we have αx1 + (1− α)x2 ∈ S.2

Note:

• The feasible set we consider in LP

Ax ≤ b

x ≥ 0

is convex.3

• If g(x) is a convex function, then the set S = {x : g(x) ≤ c}

for any constant c (if existing) is convex.

• If g(x) is a convex function, then the set

S = {u = (x|y) = (x1, x2, · · · , xn, y) : y ≥ g(x)}

is a convex set of Rn+1. If you “colour in” above the graph

of a convex function, then you get a convex set.

2Please refer to Chapter 2.
3However, the set of integers satisfying the above conditions is not a convex set.
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Theorem 3. If f(x) is a convex function and S is a convex set,

then any local minimum of the minimisation NLP

min f(x)

s.t. x ∈ S

is also a global minimum. If f(x) is a strictly convex function,

then the global minimum will be unique.4

3 Types of Optimality Conditions

3.1 One-dimensional case

Assume that a single-variable function f(x) is defined and has

continuous second-order derivatives on R. Then for any point x∗,

the Taylor’s theorem states that for “small” value δ we have

f(x∗ + δ) = f(x∗) + f ′(x∗)δ +
1

2
f ′′(x∗)δ2 + o(δ2),

where o(δ2) indicates a term that goes to zero faster than δ2 does

as δ → 0. In other words,

lim
δ→0

o(δ2)

δ2
= 0.

This is a formal way of denoting that this remainder term gets

very small if δ is close to zero, and is “dominated” by the other

terms.

The Taylor’s formula leads to the following necessary condition

and sufficient condition for x∗ to be a local minimum of f(x).

4The similar result applies to the concave function and maximisation NLP.
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First-order condition: If x∗ is a local minimum of f(x), then

f ′(x∗) = 0.

This condition is also referred to as a necessary condition for a

local minimum, since it must happen in order for x∗ being a local

minimum. But if f ′(x∗) = 0, we don’t know for sure whether we

have a local minimum. Thus, it is not a sufficient condition, since

it does not guarantee that x∗ will be a local minimum.

Second-order condition: If f ′(x∗) = 0 and f ′′(x∗) > 0, then x∗

is a local minimum of f(x).

This condition is also referred to as a sufficient condition for a

local minimum.

3.2 Multi-dimensional case

Assume that an n-variable function f(x) is defined and has con-

tinuous second-order partial derivatives on Rn. Then for any

point x∗, the Taylor’s theorem states that for “small” deviation

d = (d1, d2, · · · , dn)
T we have the formula

f(x∗+d) = f(x∗)+
n
∑

i=1

∂f(x∗)

∂xi
di+

1

2

n
∑

i=1

n
∑

j=1

∂2f(x∗)

∂xi∂xj
didj+o(‖d‖2)

= f(x∗) + (∇f(x∗))Td+
1

2
dT∇2f(x∗)d+ o(‖d‖2).

The optimality conditions for the n-dimensional case is shown as

follows.

3.2.1 First-order optimality condition

If x∗ is a local minimum of f(x), then ∇f(x∗) = 0.
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This condition is also referred to as a necessary condition for a

local minimum since it must happen in order for x∗ being a local

minimum. But if ∇f(x∗) = 0, we have no idea about whether we

have a local minimum. It is not a sufficient condition since it does

not guarantee that x∗ will be a local minimum.

We call a point x∗, where ∇f(x∗) = 0, a stationary point of f(x).

For unconstrained NLP problems, all local minima are stationary

points.

Example 4. Consider the function f(x) = f(x1, x2) = x21 −

x1x2 + x22 − 3x2. Then we have

∇f(x) =

(

∂f(x)

∂x1
,
∂f(x)

∂x2

)T

= (2x1 − x2, −x1 + 2x2 − 3).

Solving the system of equations ∇f(x) = 0 gives x∗ = (1, 2)T ,

which is a stationary point of f(x).

3.2.2 Second-order optimality condition

Recall that in one-dimensional case the sufficient condition for a

local minimum is “f ′(x∗) = 0 and f ′′(x∗) > 0”. If f ′′(x∗) = 0,

then further investigations are necessary.

In the n-dimensional case, the second-order derivative is gener-

alised to the Hessian matrix. If x∗ is a stationary point, then the

Taylor’s formula at x∗ gives an approximation

f(x∗ + d) ∼= f(x∗) +
1

2
dT∇2f(x∗)d.

If f(x∗ + d) ≥ f(x∗), i.e. x∗ is a local minimum, then we have

dT∇2f(x∗)d ≥ 0 for any d.
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Definition: An n× n symmetric matrix A is called

• positive definite if xTAx > 0 for any n-dimensional vector

x 6= 0,

• positive semidefinite if xTAx ≥ 0 for any n-dimensional vec-

tor x,

• negative definite if xTAx < 0 for any n-dimensional vector

x 6= 0,

• negative semidefinite if xTAx ≤ 0 for any n-dimensional vec-

tor x,

• indefinite otherwise, i.e. xTAx has positive and negative

values for different x.

Example 5. Let I be the n × n identity matrix. Then for any

nonzero n-dimensional vector x, we have

xT Ix = xTx = x21 + x22 + · · · + x2n > 0.

Hence, I is positive definite.

Example 6. The matrix A =

(

1 −1

−1 1

)

gives

(

x1 x2
)

(

1 −1

−1 1

)(

x1

x2

)

= (x1 − x2)
2 ≥ 0.

for all x ∈ R2. So A is positive semidefinite. Note that for any

vector x = (x1, x1)
T we have xTAx = 0. Hence, A is not positive

definite.
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Definition: Assume that A is an n × n matrix. A nonzero n-

dimensional vector x is called an eigenvector of A if it satisfies

the equality Ax = λx for some scalar λ. The scalar λ is called an

eigenvalue of A.

The eigenvalues of A can be found by solving the characteristic

equation

det(A− λI) = 0,

where “det” indicates the determinant.

Theorem 4. A symmetric matrix A is positive definite if and

only if all its eigenvalues are positive.

Now we turn back to the optimality condition.

Theorem 5. (Second-order necessary condition)

If x∗ is a local minimum for an unconstrained NLP problem min f(x),

then

(i) ∇f(x∗) = 0, and

(ii) ∇2f(x∗) is positive semidefinite.

Theorem 6. (Second-order sufficient condition)

If

(i) ∇f(x∗) = 0, and

(ii) ∇2f(x∗) is positive definite,

then x∗ is a local minimum for the unconstrained NLP problem

min f(x).
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Example 7. Consider the function f(x) = f(x1, x2) = x21 −

x1x2+x22−3x2 in Example 4. The function has a stationary point

x∗ = (1, 2)T . Its Hessian matrix is

∇2f(x) = ∇2f(x1, x2) =





∂2f(x)
∂x2

1

∂2f(x)
∂x1∂x2

∂2f(x)
∂x2∂x1

∂2f(x)
∂x2

2



 =

(

2 −1

−1 2

)

.

Thus, we have ∇2f(x∗) = ∇2f(1, 2) =

(

2 −1

−1 2

)

.

The eigenvalues of this matrix are found by solving the equation

det(∇2f(1, 2)− λI) =

∣

∣

∣

∣

∣

2− λ −1

−1 2− λ

∣

∣

∣

∣

∣

= (2− λ)2 − 1 = (3− λ)(1− λ) = 0.

⇒ λ1 = 3, λ2 = 1.

Since both eigenvalues are positive, the Hessian matrix ∇2f(1, 2)

is positive definite. Hence, by the second-order sufficient condition

the point x∗ = (1, 2)T is a local minimum of f(x).

4 Convexity Revisited

Recall that a function f(x) is called convex if for any two points

x1 and x2 in its domain and for any α ∈ [0, 1] we have

f
(

αx1 + (1− α)x2

)

≤ αf(x1) + (1− α)f(x2).

And a function f(x) is called strictly convex if for any x1 6= x2 in

its domain and for any α ∈ (0, 1) we have

f
(

αx1 + (1− α)x2

)

< αf(x1) + (1− α)f(x2).
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Theorem 7. Consider a function f(x) defined in a convex do-

main. Then

(i) (Necessary condition for convexity) If f(x) is convex, then

∇2f(x) is positive semidefinite everywhere in its domain.

(ii) (Sufficient condition for strict convexity) Function f(x) is

strictly convex if its Hessian matrix ∇2f(x) is positive defi-

nite for all x in its domain.

In Example 7, the Hessian matrix of function f(x) = x21 − x1x2 +

x22 − 3x2 has positive eigenvalues, which do not depend on x, so

it is positive definite everywhere. Hence, f(x) is strictly convex.

Furthermore, Theorem 3 implies that the local minimum x∗ =

(1, 2)T is a global minimum and a unique global minimum of f(x).

5 Gradient Methods

It is obvious that finding stationary point(s) is the very first step

of the solving of unconstrained NLP problems. Finding a sta-

tionary point for some NLP problems could be easy, but it may

not be the case in many other ones. In this section, we intro-

duce an important class of solution procedures, which cope with

unconstrained NLP problems by applying the aforementioned op-

timality conditions and approximating a stationary point of the

nonlinear objective function, which is usually complicated. Once

again, consider the unconstrained minimisation NLP problem

min f(x). (1)
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Let x0 be an initial approximation to the solution of (1). Assume

that x0 is not a stationary point of f(x). Then we choose an initial

direction d0, and an arbitrary scalar value α. For a sufficient small

value of α, Taylor’s theorem gives

f(x0 + αd0) = f(x0) + (∇f(x0))
T (αd0) + o(α‖d0‖)

= f(x0) + α(∇f(x0))
Td0 + o(α‖d0‖).

If the direction d0 has been chosen in such a way that (∇f(x0))
Td0 <

0, then for a sufficiently small positive α (such that o(α‖d0‖) ≈ 0)

we have

f(x0 + αd0) < f(x0).

Finding the value α0 such that

f(x0 + α0d0) = min
α>0

f(x0 + αd0)

gives the point x1 = x0 + α0d0 to be a better approximation

solution to (1). This procedure can be repeated until we find a

“good enough” approximation solution to (1).

The basic idea of the gradient methods is that we choose a starting

point x0 and then at each iteration k ≥ 1

1. choose a direction dk such that (∇f(xk))
Tdk < 0, and

2. find the value αk satisfying

f(xk + αkdk) = min
α>0

f(xk + αdk), and

3. take xk+1 = xk + αkdk as a better approximation solution

to (1).
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The value αk is then called the step size of iteration k.

In many algorithms of this category, the direction dk is chosen

by taking a symmetric and positive definite matrix Dk and then

calculating

dk = −Dk∇f(xk).

This direction dk satisfies the required condition since

(∇f(xk))
Tdk = (∇f(xk))

T (−Dk∇f(xk)) = −(∇f(xk))
TDk∇f(xk) < 0.

Now we introduce two algorithms which fall into the category of

gradient methods.

5.1 Steepest descent method

At each iteration k ≥ 1, the steepest descent method chooses

Dk = I, the n × n identity matrix, which is positive definite. So

the direction chosen is

dk = −I · ∇f(xk) = −∇f(xk),

and this is a descent direction.5 Actually it is the direction in

which the function f(x) decreases most rapidly when moving from

xk.

Algorithm for Steepest Descent Method

Step 0. Choose a starting point x0, and a small positive scalar ǫ.

Set k = 0.
5Notice that in order to simplify the presentation we do not set the “direction” as a

normalised vector (unit vector).

16



Step 1. If ‖∇f(xk)‖ < ǫ, then STOP: xk is a satisfactory ap-

proximate minimum of f(x).6 Otherwise, set

dk = −∇f(xk).

Step 2. Choose the step size αk by solving the one-dimensional

problem

min
α>0

g(α) = min
α>0

f(xk + αdk).

Let αk = argmin
α>0

g(α), and then xk+1 = xk + αkdk.

Set k = k + 1 and go to Step 1.

Example 8. Consider the unconstrained NLP problem

min f(x1, x2) = x21 − x1x2 + x22 − 3x2.

Although its stationary point can be easily calculated, we demon-

strate the steepest descent method to find an approximation so-

lution with ǫ = 0.5 and a starting point at the origin.

Solution. We have

∇f(x1, x2) = (2x1 − x2, −x1 + 2x2 − 3)T .

Iteration 0.

Step 0. Let x0 = (0, 0)T .

Step 1. ∇f(x0) = (0,−3)T , and ‖∇f(x0)‖ =
√

02 + (−3)2 =

3 > 0.5 = ǫ.

Let d0 = −∇f(x0) = (0, 3)T . Go to Step 2.

6The point xk is a satisfactory approximate stationary point since ∇f(xk) ≈ 0.
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Step 2. To find the the step size value α0, we need to solve the

problem

min
α>0

g(α) = min
α>0

f(x0 + αd0).

Then we have

x0 + αd0 = (0, 0)T + α(0, 3)T = (0, 3α)T

⇒ g(α) = f(x0 + αd0) = f(0, 3α) = 9α2 − 9α

dg(α)

dα
= 9(2α− 1) = 0 ⇒ α0 =

1

2
> 0

Hence,

x1 = x0 + α0d0 = (0, 0)T +
1

2
(0, 3)T =

(

0,
3

2

)T

.

Iteration 1.

Step 1. ∇f(x1) = (−3
2 , 0)

T , and ‖∇f(x1)‖ =
√

(−3
2)

2 + 02 =
3
2
> ǫ = 0.5.

So let d1 = −∇f(x1) =
(

3
2, 0
)T

and go to Step 2.

Step 2. To find the the step size value α1, we need to solve the

problem

min
α>0

g(α) = min
α>0

f(x1 + αd1).

Then we have

x1 + αd1 =
(

0,
3

2

)T

+ α
(3

2
, 0
)T

=

(

3α

2
,
3

2

)T

⇒ g(α) = f(x1 + αd1) = f
(3α

2
,
3

2

)

=
9

4
(α2 − α− 1)
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dg(α)

dα
=

9

4
(2α− 1) = 0 ⇒ α1 =

1

2
> 0

Hence,

x2 = x1 + α1d1 =
(

0,
3

2

)T

+
1

2

(3

2
, 0
)T

=
(3

4
,
3

2

)T

.

Iteration 2.

Step 1. ∇f(x2) =
(

0,−3
4

)T
, and ‖∇f(x2)‖ = 3

4 > ǫ = 0.5.

So let d2 = −∇f(x2) =
(

0, 3
4

)T
and go to Step 2.

Step 2. To find the the step size value α2, we need to solve the

problem

min
α>0

g(α) = min
α>0

f(x2 + αd2).

Then we have

x2 + αd2 =
(3

4
,
3

2

)T

+ α
(

0,
3

4

)T
=

(

3

4
,
3

2
+

3α

4

)T

⇒ g(α) = f(x2 + αd2) = f
(3

4
,
3

2
+

3α

4

)

=
9

16
(α2 − α− 5)

dg(α)

dα
=

9

16
(2α− 1) = 0 ⇒ α2 =

1

2
> 0

Hence,

x3 = x2 + α2d2 =
(3

4
,
3

2

)T

+
1

2

(

0,
3

4

)T

=
(3

4
,
15

8

)

.

Iteration 3.

Step 1. ∇f(x3) = (−3
8 , 0)

T , and ‖∇f(x3)‖ = 3
8 = 0.375 <

ǫ = 0.5. Stop and declare that x3 =
(

3
4,

15
8

)

is a satisfactory

approximation solution.7

7Recall that the optimum to this minimisation NLP occurs at x∗ = (1, 2)T .
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Steepest descent method was invented in the nineteenth century

by Cauchy. The advantages of this method is that it does not

require

• the computation of second-order derivatives,

• solving a system of equations to compute the search direction,

and

• storing matrices.

Its disadvantage is the slow rate of convergence. As a result, even

though the cost per iteration is low, the overall cost of generating

an approximation solution is high.

5.2 Newton’s method

At each iteration k, Newton’s method takes

Dk = (∇2f(xk))
−1.

The idea of the method is that at each iteration instead of finding

a minimum of f(x) we find a minimum of the quadratic approxi-

mation of f(x) around the current point xk

f(x) ≈ f(xk)+(∇f(xk))
T (x−xk)+

1

2
(x−xk)

T∇2f(xk)(x−xk) = g(x).

The minimum of g(x) occurs when the gradient of this quadratic

is zero, i.e. the next approximation can be taken as the solution

of the vector equation

∇g(x) = ∇f(xk) +∇2f(xk)(x− xk) = 0
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Solving this vector equation and setting the solution x to xk+1

gives

xk+1 = xk − (∇2f(xk))
−1∇f(xk),

which is equivalent to setting

αk = 1 and Dk = (∇2f(xk))
−1.

Algorithm for Newton’s Method

Step 0. Choose a starting point x0 and a small positive scalar ǫ.

Let k = 0.

Step 1. If ‖∇f(xk)‖ < ǫ, then STOP: xk is a satisfactory ap-

proximate minimum of f(x). Otherwise, let

xk+1 = xk − (∇2f(xk))
−1∇f(xk).

Step 2. Set the k = k + 1 and go to Step 1.

Note that Newton’s method selects a step size αk = 1 at each

iteration k.

Example 9. Consider again the unconstrained NLP problem

min f(x1, x2) = x21 − x1x2 + x22 − 3x2

We demonstrate Newton’s method to find an approximation so-

lution with ǫ = 0.5 and a starting point at the origin.

Solution. We have

∇f(x1, x2) = (2x1 − x2, −x1 + 2x2 − 3)T .
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∇2f(x1, x2) =

(

2 −1

−1 2

)

.

Iteration 0.

Step 0. Let x0 = (0, 0)T and k = 0.

Step 1.

∇f(x0) = (0, −3)T ⇒ ‖∇f(x0)‖ =
√

02 + (−3)2 = 3 > ǫ = 0.5

∇2f(x0) =

(

2 −1

−1 2

)

⇒ (∇2f(x0))
−1 =

(

2
3

1
3

1
3

2
3

)

(∇2f(x0))
−1∇f(x0) =

(

2
3

1
3

1
3

2
3

)(

0

−3

)

=

(

−1

−2

)

Thus,

x1 = x0 − (∇2f(x0))
−1∇f(x0) =

(

0

0

)

−

(

−1

−2

)

=

(

1

2

)

.

Step 2. Set k = 0 + 1 = 1.

Iteration 1.

Step 1.

∇f(x1) =

(

0

0

)

⇒ ‖∇f(x1)‖ = 0 < ǫ = 0.5

Stop and declare that a satisfactory approximation solution is

found.

Newton’s method usually converges much more rapidly than the

steepest descent method, but sometimes it could fail. Besides,
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the calculation of the matrix inverse (∇2f(x))−1 is hard work.

Hence, there have been several modified methods, which will be

introduced in the advanced subject “Nonlinear Methods in Quan-

titative Management”.

Further reading: Section 11.1–11.7 in the reference book “Operations Research: Ap-
plications and Algorithms” (Winston, 2004)
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