
Lecture Notes – Part 9

Constrained Nonlinear Programming

1 Introduction

In this subject, we consider the constrained NLP with the linear 
constraints only. This simplifies the discussion greatly, but does 
not lose much generality. Most methods for solving optimisation 
problems with nonlinear constraints transform the constraints into 
linearised ones, in one way or another, even though it could fail.

2 Linear-Equality Constrained NLP

Consider a minimisation NLP problem with only linear equality 
constraints:

min z = f(x)

s.t. Ax = b
(1)

where A is an m × n matrix, n > m, rank(A) = m, x ∈ Rn,

and b ∈ Rm. We also assume that the nonlinear function f(x) is

defined and has continuous second-order partial derivatives over

the feasible region D = {x : Ax = b}.
Since f(x) is a nonlinear function, its minimum may occur any-

where within the feasible region D instead of the extreme points.

Hence we cannot use any technique similar to the Simplex Method.
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2.1 Reduced Function

One of the proposed solution approaches is to transform the con-

sidered constrained NLP to an unconstrained NLP by virtue of a

reduced function.

Example 1. Consider the following problem

min f(x1, x2) = x21 + x22

s.t. 3x1 + 2x2 = 6

We can transform it to an unconstrained version by rearranging

the constraint

x2 = 3− 3

2
x1,

and substituting it for x2 in the objective function f(x1, x2). Then

the considered constrained NLP problem with two decision vari-

ables is reduced to an equivalent unconstrained NLP problem with

one decision variable

min φ(x1) = x21 +
(

3− 3

2
x1
)2
.

Finding the stationary point and applying the optimality condi-

tions for unconstrained NLP, we have a local minimum (x∗1, x
∗
2)

T =

(18
13
, 12
13
) with the objective value min f(x∗1, x

∗
2) =

36

13
.

In general case, we transform the constrained NLP (1) to an un-

constrained version by means of a general solution to the system

of linear equations

Ax = b. (2)
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Since the system of constraints (2) is the same as what we have

in LP, the similar skill can be utilised. We first divide the n-

dimensional decision-variable vector x into an m-dimensional ba-

sis xB and an (n−m)-dimensional nonbasis xN , and correspond-

ingly the m× n constraint matrix A into an m×m basic matrix

B and an m× (n−m) nonbasic matrix N. Assume without loss

of generality that the first m columns of A give the basic matrix

B. Then the vector equation (2) can be rewritten in the form

BxB +NxN = b.

So, the basis can be represented in terms of the nonbasis as follows

xB = B−1(b−NxN) = B−1b−B−1NxN.

Hence, the general solution of (2) is

x =

(

xB

xN

)

=

(

B−1b−B−1NxN

xN

)

=

(

B−1b

0

)

+

(

−B−1N

I

)

xN,

(3)

where
(

B−1b

0

)

= x and

(

−B−1N

I

)

= Z.

Then the general solution (3) can be rewritten in the form

x = x+ ZxN, (4)

where x is a particular solution of (2) by setting xN = 0, i.e.

Ax = b.

The matrix Z is called a basis matrix for the null-space of A.∗

∗The null-space of Am×n is the set of all x ∈ R
n giving Ax = 0, which is a (n −m)-

dimensional subspace of vector space R
n. The set of columns of Z gives a basis for the

null-space of A.
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By replacing (4) into the objective function f(x), the constrained

NLP (1) is transformed into the unconstrained NLP

min z = f(x+ ZxN) = φ(xN)

Function φ(xN) of (n − m)-dimensional vector xN is called the

reduced function of the constrained NLP problem (1).

Example 2. Consider the following constrained NLP

max f(x1, x2, x3) = x21 + 4x1x3 − x22

s.t. 2x1 + x2 + 4x3 = 5 (i)

3x1 + x2 − x3 = 1 (ii)

The feasible set of the problem is the set of solutions of the system

of linear equations (i) and (ii).

Applying Gauss-Jordan elimination, we obtain a general solution

in the form

x =







x1

x2

x3






=







−4

13

0






+







5

−14

1






x3,

if we select x3 as the variable on which x1 and x2 are dependent.

This is equivalent to selecting xN = x3 and xB = (x1, x2)
T , which

gives matrices

B =

(

2 1

3 1

)

⇒ B−1 =

(

−1 1

3 −2

)

,

B−1b =

(

−1 1

3 −2

)(

5

1

)

=

(

−4

13

)

⇒ x =







−4

13

0






,
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and

N =

(

4

−1

)

⇒ B−1N =

(

−5

14

)

⇒ Z =

(

−B−1N

I

)

=







5

−14

1






.

Hence, the feasible set of the problem is the set of vectors in the

form

x = x+ Zx3 =







−4

13

0






+







5

−14

1






x3,

which is indeed identical to the set obtained by solving the system

of equations directly.

Hence the reduced function of the problem is

φ(x3) = f((−4, 13, 0)T+(5,−14, 1)Tx3) = f(5x3−4,−14x3+13, x3)

= (5x3 − 4)2 + 4(5x3 − 4)x3 − (−14x3 + 13)2.

Again, we can solve the unconstrained NLP problem maxφ(x3)

by finding the stationary point and applying the optimality condi-

tions for unconstrained NLP. The local maximum is (x∗1, x
∗
2, x

∗
3) =

(166
151

,−193

151
, 154
151

) with the objective value max f(x∗1, x
∗
2, x

∗
3) =

613

151
.

2.2 Optimality Conditions

We aim to solve the unconstrained NLP problem with a reduced

function

min φ(xN),

where φ(xN) = f(x + ZxN), by setting up some optimality nec-

essary conditions and sufficient conditions.
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Applying the chain rule for differentiation gives the gradient of

φ(xN), which is also called the reduced gradient of f(x)

∇φ(xN) = ZT∇f(x),

and the Hessian matrix of φ(xN), which is also called the reduced

Hessian matrix of f(x)

∇2φ(xN) = ZT∇2f(x)Z.

Then Theorems 5 and 6 in Lecture Note – Part 8 imply the fol-

lowing results.

Theorem 1. (Second-order necessary conditions – Linear

equality constraints)

If x∗ a local minimiser of f(x) over the set {x : Ax = b}, and Z

is a basis matrix for the null-space of A, then

(i) ZT∇f(x∗) = 0, and

(ii) ZT∇2f(x∗)Z is positive semidefinite.

Theorem 2. (Second-order sufficient conditions – Linear

equality constraints)

If Z is a basic matrix for the null-space of A and the point x∗

satisfies

(i) Ax∗ = b,

(ii) ZT∇f(x∗) = 0, and

(iii) ZT∇2f(x∗)Z is positive definite,
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then x∗ a local minimiser of f(x) over the set {x : Ax = b}.
Notice that given a point x for a considered linear-equality con-

strained NLP problem we can apply directly the above two theo-

rems without deriving a reduced function.

Example 3. Consider the problem

min f(x1, x2, x3) = x21 − 2x1 + x22 − x23 + 4x3

s.t. x1 − x2 + 2x3 = 2

We have

∇f(x) =







2x1 − 2

2x2

−2x3 + 4






and ∇2f(x) =







2 0 0

0 2 0

0 0 −2






.

To find a basis matrix Z for the null-space of A1×3 = (1, −1, 2),

we choose, for example, xN = (x2, x3)
T and xB = x1. Thus, we

have N = (−1, 2) and B = 1. Hence, we have

Z =

(

−B−1N

I

)

=







1 −2

1 0

0 1






.

Then we can find the stationary point(s) as per condition (i) and

(ii) in Theorem 2. Coupling x1 − x2 + 2x3 = 2 with

ZT∇f(x) =

(

1 1 0

−2 0 1

)







2x1 − 2

2x2

−2x3 + 4






=

(

0

0

)

,
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we have a system of three equations as follows:










x1 −x2 +2x3 = 2

2x1 +2x2 = 2

−4x1 −2x3 = −8.

Solving the above system of three equations yields the solution

x∗ = (2.5,−1.5,−1)T . Then we check condition (iii) as follows:

ZT∇2f(x∗)Z =

(

1 1 0

−2 0 1

)







2 0 0

0 2 0

0 0 −2













1 −2

1 0

0 1






=

(

4 −4

−4 6

)

.

Since the eigenvalues of the Hessian matrix ZT∇2f(x∗)Z are µ =

5±
√
17 > 0, ZT∇2f(x∗)Z is positive definite.† The second-order

sufficient conditions are satisfied, so x∗ = (2.5,−1.5,−1)T is a

local minimiser of f(x) over the feasible region.

2.3 The Lagrangian Function

Another technique to transform a constrained NLP to an uncon-

strained NLP is to introduce the Lagrangian function. Consider

a minimisation constrained NLP problem

min z = f(x)

s.t. gi(x) = bi, i = 1, . . . ,m.
(5)

We introduce a function called the Lagrangian, which is designed

by associating a multiplier λi called Lagrange multiplier‡ with the

†Notice that the Hessian matrix ∇2f(x) or ∇2f(x∗) itself is not positive definite.
‡The Lagrange multipliers are closely related to the dual variables in duality theorem.
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i-th constraint, i = 1, . . . ,m in (5), as shown below.

L(x,Λ) = f(x) +
m
∑

i=1

λi

(

bi − gi(x)
)

(6)

Then assume that we can find a point (x∗,Λ∗), where Λ∗ = (λ∗
1, λ

∗
2,

. . . , λ∗
m) ∈ Rm, so as to minimise L(x,Λ). Now we explain why

x∗ solves (5). If (x∗,Λ∗) minimises L(x,Λ), then at (x∗,Λ∗)

∂L(x,Λ)

∂λi

= bi − gi(x) = 0, i = 1, . . . ,m. (7)

This shows that x∗ will satisfy the constraints in (5) and thus be

feasible. To show x∗ is the optimal solution of (5), we let x′ be

any feasible solution to (5). Since (x∗,Λ∗) minimises L(x,Λ), for

any vector Λ′ we have

L(x∗,Λ∗) ≤ L(x′,Λ′). (8)

Since x∗ and x′ are both feasible in (5), the terms in (6) involving

the λ’s are all zeros, and (8) becomes f(x∗) ≤ f(x′). Thus x∗

does solve (5). In short, if (x∗,Λ∗) solves the unconstrained NLP

problem

min L(x,Λ), (9)

then x∗ solves the constrained NLP problem (5).

From Theorem 5 (the first-order necessary condition) in Lecture

Note – Part 8, we know that for (x∗,Λ∗) solving (9), it is necessary

that at (x∗,Λ∗),

∇L(x,Λ) = 0, (10)
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i.e., ∇xL(x,Λ) = 0 and ∇ΛL(x,Λ) = 0. The system of equations

∇ΛL(x,Λ) = 0 is exactly (7), and ∇xL(x,Λ) = 0 indicates

∇f(x) =
m
∑

i=1

λi∇gi(x),

which involves a geometrical interpretation of Lagrange multipli-

ers. For x∗ to solve (5), it is necessary that ∇f(x) is a linear

combination of the constraint gradients ∇gi(x), i = 1, . . . ,m.

Actually, the linearity of gi(x) is unnecessary for applying the

Lagrangian function. Any point (x′,Λ′) satisfying (10) is a sta-

tionary point for the function L(x,Λ) and x′ is a feasible solution

to (5). That is, we could get the local minimum x∗ to (5) by find-

ing x′ with the smallest objective value among those stationary

points.

Example 4. Consider the following constrained NLP

min f(x1, x2) = x21 + 2x22

s.t. x21 + x22 = 1.

The Lagrangian of the constrained NLP is

L(x1, x2, λ) = x21 + 2x22 + λ(1 − x21 − x22).

Then we have

∇L(x1, x2, λ) = 0 ⇒











2x1 − 2λx1 = 0 (⋆)

4x2 − 2λx2 = 0 (⋆⋆)

1− x21 − x22 = 0 (⋆ ⋆ ⋆)
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From (⋆), we have x1 = 0, λ = 1 or λ = 0. But λ = 0 doesn’t

satisfy (⋆)–(⋆ ⋆ ⋆) simultaneously. If x1 = 0, then (⋆ ⋆ ⋆) gives

x2 = 1 or −1. If λ = 1, then we have x2 = 0 from (⋆⋆), so then

(⋆ ⋆ ⋆) gives x1 = 1 or −1. Therefore, we have four stationary

points (x1, x2, λ) = (0, 1, 2), (0,−1, 2), (1, 0, 1), and (−1, 0, 1).

Evaluating function f(x1, x2) at these four points, we find that

f(0, 1) = 2, f(0,−1) = 2, f(1, 0) = 1, and f(−1, 0) = 1. Thus,

there are two local minima (x∗1, x
∗
2) = (1, 0) and (−1, 0).

If each gi(x) is a linear function, then we have the following the-

orem.

Theorem 3. If f(x) is a convex function, then any point (x∗,Λ∗)

satisfying (10) will yield a local minimum x∗ to (5).§

But if f(x) is not a convex function, then we still have to use (iii)

in Theorem 2 to check whether the yielded stationary point(s) are

the local minima within the feasible region.

Example 5. Consider the problem in Example 3. The La-

grangian of the constrained NLP is

L(x1, x2, x3, λ) = x21 − 2x1 + x22 − x23 +4x3 + λ(2− x1 + x2 − 2x3).

Then we have

∇L(x1, x2, x3, λ) = 0 ⇒



















2x1 − 2− λ = 0 (11)

2x2 + λ = 0 (12)

−2x3 + 4− 2λ = 0 (13)

2− x1 + x2 − 2x3 = 0 (14)
§Note that even if the hypotheses fail to hold, it is still possible that any point 

satisfying (10) will solve (5).
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From (11), (12), and (13) we have










x1 = λ+2

2
(15)

x2 = −λ
2

(16)

x3 = −λ + 2 (17)

Substituting (15), (16) and (17) into (14) gives

2− λ+ 2

2
− λ

2
− 2(−λ + 2) = λ− 3 = 0 ⇒ λ = 3.

Bringing this value into (15), (16) and (17) gives us the solution

(x1, x2, x3)T = (2.5, −1.5, −1),

which is the unique stationary point. Since we have seen that the 
second-order sufficient conditions are satisfied at (x1, x2, x3)T =

(2.5, −1.5, −1) in Example 3, this is the local minimum over the 
feasible region.
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