
37242

Optimisation in Quantitative Management

Preparation Week Study Sheets

This study material is provided to assist students in overcoming any weak-
nesses in prerequisite knowledge that you might have for the subject 37242
OQM.

1 Revision of Basic Linear Algebra

1.1 Vectors and Matrices

Linear algebra is in some sense the “language” of mathematical optimisation
in general. It is a very important shorthand for the problems in higher
dimensions that we will encounter.

Vector: A vector of dimension n is an ordered collection of n elements,
which are called components.

Consider an n-dimensional variable vector

x =











x1

x2

...
xn











.

Vector x is called non-negative, denoted by x ≥ 0, if we have xi ≥ 0 for
each i ∈ {1, 2, · · · , n}.

In this subject, vectors are written by default as column vectors. When
we want a row vector, we write, for example

cT = (c1, c2, . . . , cn),

which is called c transpose.
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If two vectors have the same dimension, then we can take the dot product
(or inner product), which gives us a scalar. This can be written in a few
ways:

c · x = cTx = c1x1 + c2x2 + . . .+ cnxn =
n

∑

k=1

ckxk.

Mostly, the notation cTx will be adopted in this subject.

Matrix: A matrix is an array of numbers, for example,

A =











a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn











is an m× n matrix (m rows and n columns).

For each j ∈ {1, 2, · · · , n}, let Aj be the vector of the jth column of
matrix A, i.e.

Aj =











a1j
a2j
...

amj











.

Then matrix A can be written in the form

A = (A1, A2, · · · An).

Matrices can also be transposed. The transpose of A is denoted by AT ,
is given by

AT =











a11 a21 · · · am1

a12 a22 · · · am2

...
...

...
a1n a2n · · · amn











,

which is an n×m matrix (n rows and m columns).

A matrix can be multiplied by another one if the number of columns in
the first one is identical to the number of rows in the second one. If A is an
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m× n matrix, and B is an n× p matrix, then AB is an m× p matrix, given
by

AB =










a11b11 + a12b21 + · · ·+ a1nbn1 · · · a11b1p + a12b2p + · · ·+ a1nbnp
a21b11 + a22b21 + · · ·+ a2nbn1 · · · a21b1p + a22b2p + · · ·+ a2nbnp

...
...

am1b11 + am2b21 + · · ·+ amnbn1 · · · am1b1p + am2b2p + · · ·+ amnbnp











.

Each element of the new matrix, (AB)ij, is the dot product of the i
th row of

A and the jth column of B. Note that, in general AB 6= BA.
An n-dimensional (column) vector can be regarded as an n × 1 matrix,

and its transpose is a 1×n matrix. Hence cTx is just a special case of matrix
multiplication.

We will also use the product of a matrix and a vector as shown below
frequently in this subject.

Ax =











a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn



























x1

x2

·
·
·
xn

















=











a11x1 + a12x2 + · · ·+ a1nxn

a21x1 + a22x2 + · · ·+ a2nxn

...
am1x1 + am2x2 + · · ·+ amnxn











One of the ways we use matrices is to abbreviate a whole list of linear
inequalities, for example, we will write Ax ≤ b, where A is an m×n matrix,
x is an n-dimensional vector and b is an m-dimensional vector. This is
equivalent to

a11x1 + a12x2 + · · ·+ a1nxn ≤ b1
a21x1 + a22x2 + · · ·+ a2nxn ≤ b2

...
am1x1 + am2x2 + · · ·+ amnxn ≤ bm
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We can solve a system of linear equationsAx = b by Gaussian elimination
(By using elementary row operations, the augmented matrix is reduced to
row echelon form). It may have no solution, a unique solution, or an infinite
number of solutions.1

Consider that B is a square matrix (say m×m). Then its inverse matrix
B−1 may exist, and

BB−1 = B−1B = I,

where I is an m×m identity matrix.
If B−1 exists, then the system of equations Bx = b has a unique solution

which can be obtained by
x = B−1b.

In this case, we can use Gauss-Jordan elimination (By using elementary
row operations, the augmented matrix is reduced to reduced row echelon
form). To solve Bx = b by this method, we set up an augmented matrix

(B|b) and use elementary row operations (EROs) to reduce the left part of
the augmented matrix to the identity matrix.

The three EROs are:

1. Multiply one row by a constant.

2. Add a multiple of one row to another row.

3. Swap two rows.

This takes us from
(B|b)

to
(B−1B|B−1b) = (I|B−1b).

So the solution is revealed in the right hand side of the resulting aug-
mented matrix.

Consider the following example. To solve the system of equations

x1 + 2x2 + x3 = 5,
2x1 + 4x2 = 6,
x1 + 3x2 = 6,

1Please see p.29–32 in “Operations Research: Applications and Algorithms (Winston,
2004)”.
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we have the matrix form





1 2 1
2 4 0
1 3 0









x1

x2

x3



 =





5
6
6



 .

So its augmented matrix (B|b) is





1 2 1 5
2 4 0 6
1 3 0 6



 .

Then we conduct the EROs as follows:





1 2 1 5
0 0 −2 −4
0 1 −1 1



 R′

2
← R2 − 2R1

R′

3
← R3 − R1





1 2 1 5
0 1 −1 1
0 0 −2 −4



 R′′

2
← R′

3

R′′

3
← R′

2





1 2 1 5
0 1 −1 1
0 0 1 2





R′′′

3
← −1

2
R′′

3





1 2 0 3
0 1 0 3
0 0 1 2





R′′′′

1
← R′′′

1
−R′′′

3

R′′′′

2
← R′′′

2
+R′′′

3





1 0 0 −3
0 1 0 3
0 0 1 2





R′′′′′

1
← R′′′′

1
− 2R′′′′

2

So the solution is

x =





x1

x2

x3



 =





−3
3
2



 .
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The matrix inverse can be found by a similar process. Note, though, that
finding solutions or finding the inverse can take a substantial amount of work!

After going through this study material, students are urged to
read “Chapter 2”, including all the examples and exercise prob-
lems, in the reference book “Operations Research: Applications
and Algorithms (Winston, 2004).”
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