UTS

Introduction to Optimisation:

Integer
Programming

Lectures 10-11

Lecture notes by Dr. Julia Memar and Dr. Hanyu Gu and with an
acknowledgement to Dr.FJ Hwang and Dr.Van Ha Do

S

¢
¢

Introduction

» An integer program (IP) is a mathematical programming problem in which
some or all of the variables are required to be integers.

» An IP is called
 a pure IP if all variables are required to be integers,
* a 0-1 IP or binary IP if all variables must be 0 or 1, and

» a mixed IP (MIP) if some of the variables are required to be
integers.

» There is no “nice” optimality conditions as for LP and NLP

min E CiX; N
: ,,

n
s.t. E ajixj < bj, i=1---.m 7
; .

X Integer

HUTS

Branch-and-bound algorithm

Branch-and-bound method:
» The feasible region S is replaced by smaller problems S;- branching.

» Each S; is a basis of another branching
Original
problem

x; =1

X3 = X3

4

HUTS

Branch-and-bound algorithm

Pruning:

To avoid enumeration of all solutions, the search tree is "pruned” and the
following assumptions are made:

> there is an algorithm to calculate lower bound L; on objective values of
feasible solutions of a subproblem §;

» the upper bound U of objective value on S can be obtained as an objective
value on some solution ‘

HUTS

Branch-and-bound algorithm

Pruning:

» ITTOI a supprooiem S;

L;=U

then S; can/can not improve the objective
value on S, hence

» LP relaxation — the integer requirement
is ignored/relaxed

Branch-and-bound algorithm

Branching:
» each LP relaxation will represent a node on the solution tree;

» solve the LP relaxation corresponding to the current node.

* Ifin resultant solution x" = (x;',x;/, ..., x,") component x; is not integer,
then branch on this node by adding constraint

either x; > |x;’| +1 or x; < |x'] ;

HUTS

Branch-and-bound algorithm

Branching:
» each LP relaxation will represent a node on the solution tree;

» solve the LP relaxation corresponding to the current node.

* Ifin resultant solution x" = (x;',x;/, ..., x,") component x; is not integer,
then branch on this node by adding constraint

HUTS

Branch-and-bound algorithm

Bounding:

> |If for the current node the LP relaxation provides solution with OF value not
better than the incumbent solution, no further branching required, and the

node is

« Optimality gap is useful in practice for large problems
> If the node’s LP is infeasible, the node is
Rules to travel the solution tree:
» LIFO rule : Last-In-First- Out (LIFO) rule (depth-first)
» The Jumptracking rule: solves all the problems created by a branching and
then branches on the node with the best OF-value (best-first).

» Many other rules for variable order and value order

» Active research area to make use of machine learning

HUTS

Example
» max z = 8x; + 5x,
st. x;+x,<6
9x,+5x, < 45
X1, X, = 0, integer

» Solve the problem graphically:

(1)

Example

» max z = 8xq + 5x, (%)
st. x1+x,<6
9x,+5x, < 45
X1, X, = 0, integer

Solve the problem with branch-n-bound algorithm:

Node 1 (Subproblem 1): Solve (*) ignoring integer constraint:

» max z = 8xq + 5x, (%)
S.t. X1 + X <6
9X1+5x2 < 45

X1, Xy = 0, iateger

HUTS

Example — solution tree

Subproblem 1
5 — 135 UB=41.25
i
11— 73
Iy — %
4»» &
Y S
Subproblem 2 Subproblem 3
v — 41 luB=41 ;123;
it = 2 Ty = 4 T =3
2y =2 2 < LB = 40
v .
/,/ "\‘\
&Y -
Subproblem 5
Subproblem 4 , _ 365 UB=40.5556
Infeasible 2y = 3_0
‘1 9
Iy — 1
o “
v
6;:'/ \‘\Y
Subproblem 6 Subproblem 7
z =40 z2=37
— Ty =25 T, =4
it=25 xe = () Te =1
Incumbent solution » < LB — 40
UB=40,LB=40

Combinatorial Optimisation problems

» Solution has a combinatorial structure, e.g., an object on a graph; the
number of solutions increase exponentially fast

» Can be solved as Mixed Integer Program(MIP), but not efficient for large
problems; active research area:

« Knapsack problem
« Assignment problem

» Travelling salesman problem

HUTS

Knapsack problem

There is a knapsack with a capacity of 14 units. There are 4 items, each of which retains
a size and a value, e.g. item 1 has a size of 5 units and a value of 16 dollars, item 2 has
a size of 7 units and a value of 22 dollars, item 3 has a size of 4 units and a value of 12
dollars, and item 4 has a size of 3 units and a value of 8 dollars. The objective is to
decide which items shall be packed in the knapsack so as to maximise the total value of

items in the knapsack. Then the knapsack problem can be formulated as follows:

» max z = 16xy + 22x, + 12x3 + 8x,
st. 5x1+7x,+4x3+ 3x, < 14

X1,%5,X3,X4 = 0and

HUTS

Knapsack problem

There is no need to use Simplex algorithm ©

» Finding ratio and placing first the item with
then till only

Solution:

» Branching:

Subproblem 2
max z = 16xq + 22x, + 8x4 +
st 5x;+7x,+3x, <14 —

X1, X2, X4 are binary variables

HUTS

or

part fits

Subproblem 3

Subproblem 1
Knapsack problem: :— 4
] it == 1 II = IZ = 1
solution tree ra— 1,240
v &
& 7
Subproblem 2 Subproblem 3
z =432 z =431
Tz—g,ft4—0 I3=0,$4=%
|z| =43 > LB = 42
N a
4 N;\ N \\o
&Y)
Subproblem 4 Subproblem 5 Subproblem 8
zZ= 43§ 2 = 36
5 2=238
it=3]] m=%m=1 |iK=6] m=w=1 T =1=1
33—1,1’4—0 fL‘2=0,$4=1 m3=1~4=0
» < LB = 42,[X] : <LB=4[X]
-
T = 0
T4 = 1
Subproblem 6 I
E =42 Subproblem 7 Sul:pio ‘:;cgm 0
- . = %47
’ ;3;03;’2:"11 [[it =5 Infeasible =17 =%
) 5 23 =0,24=1
Incumbent solution X T3 =1, T4
LB — 42 |2] =42 < LB = 42[X]

Assignment problem - example

A manufacturing factory has four machines which can process four sorts of
tasks to be completed. The time required to set up each machine for
completing each job is shown in the table below. Any machine which has been
assigned to process a task cannot be reassigned to another task. The factory
manager aims to minimise the total setup time needed to complete four jobs

with these four machines.

Time (Hours)

Machine Task 1 Task 2 Task 3 Task 4
How many possible . .
assignments are ! 14 5 8 7
there? 9 9 19 G K
3 7 8 3 O

4 2 ! 6 10

HUTS

Assignment problem - example

Formulation: Let x;; =

minz =

S.L.

Assignment problem - example

» Totally unimodular matrix: matrix A is totally unimodular (TU) if every square
submatrix of A has determinant -1, 0 or +1

X 11 [x 12X 13X 14 |x 21 |x 22 [x 23 |x 24 [x 31 |x 32 [x 33|x 34 |x 41 |x 42 |x 43 [x 44

HUTS

Assignment problem - example
» Extreme points of LP are integral if A is unimodular and b is integral

» Network flow problem, shortest path
» Simplex algorithm can find optimal solution for the assignment problem,
I.e., no need for B&B!

» Simplex algorithm is/is not polynomial...

» Can be solved by “Hungarian method” in polynomial time

HUTS

Hungarian method

Theorem: If a number is added to or subtracted from all of the entries of any
one row or column of a cost matrix, then on optimal assignment for the

resulting cost matrix is also an optimal assignment for the original cost matrix.

HUTS

Hungarian method

The following algorithm applies the above theorem to a given n X n cost matrix to find an
optimal assignment.

Step 1. Subtract the smallest entry in each row from all the entries of its row.
Step 2. Subtract the smallest entry in each column from all the entries of its column.

Step 3. Draw lines through appropriate rows and columns so that all the zero entries of
the cost matrix are covered and the minimum number of such lines is used.

Step 4. Test for Optimality:

(i) If the minimum number of covering lines is n, an optimal assignment of
zeros is possible and we are finished.

(i) If the minimum number of covering lines is less than n, an optimal
assignment of zeros is not yet possible. In that case, proceed to Step 5.
Step 5. Determine the smallest entry not covered by any line. Subtract
this entry from each uncovered row, and then add it to each covered

column. Return to Step 3.

HUTS

Hungarian method
Row min

Column
min

HUTS

Hungarian method
Row min

Column
min

HUTS

Travelling salesman problem
» Starting from home city, a travelling salesman must travel to each of m
cities exactly once before returning home. There is a cost ¢;; associated

with a travel from city i to city j. Find the route minimizing the total trip

cost.

Travelling salesman problem
Formulation:

Let xij =

Cij

minz =

S.t.

Issues:
In many cases, combinatorial optimisation problem is easy to state, but hard

fo model.

Travelling salesman problem -

» Can be solved by combination of Hungarian and branch-and —bound algorithm
» Heuristics are important to get good UB: classic Christofides Algorithm

» Local search: k-opt of Lin and Kernighan, LKH

» Metaheuristic, Matheuristic, nature inspired algorithms, Al/machine learning,

» Strong relaxation for LB: Held-Karp LP

» Cutting Planes

TSP inspires many research directions for Combinatorial Optimasation

HUTS

Cutting Plane Algorithm

Separation algorithm

Separation as hard as optimisation:

« Given a (an arbitrary) x € P\P,;, find an
inequality that separates x from P,

General cuts
Special cuts

Cutting Plane Algorithm

Consider min(or max) z = f(x)
s.t. Ax = b,
x = 0 and integer

Step 1. Solve LP relaxation with Simplex. In the optimal tableau select row with non-integer RHS:

Step 2. Rearrange as follows — terms with integer coefficients on LHS and fractional coefficient — on
RHS:

And introduce the “cut”:

Observe that the “cut” will make the optimal non-integer bfs infeasible:

Note: we can select a row from the original formulation or the linear combination and apply the same rounding technique

Step 3 Add the cut to the constraints, introduce new slack variable x; and use Dual Simplex method to
solve the subproblem. Choose non —integer RHS, and make another cut.

HUTS

Cutting Plane Algorithm - example

max z = 8xy + 5x,

S.t. X1 + X> <6
9X1 + sz < 45
X1, %X, = 0 and integer

» Standard form:

basis | 1 @9 81 89 rhs
Z 0 0 1.25 0.75|41.25
T 0 1 225 -025| 2.25
T 1 0 -1.25 025 3.75

Cutting Plane Algorithm - example

basis | 1 @9 81 89 rhs

z 0 0 125 0.75|41.25

Ty 0 1225 -025(2.25
T 1 0 -1.25 0.25 | 3.75

Cutting Plane Algorithm - example

max z = 7x1 + 9x,

st. —x1+3x,<6
7x1 +) < 35
X1,X%, = 0 and integer

» Optimal tableau:

basis| #y x9 s s | rhs
z [0 0 B B 63
| 01 5 5| 3
SR

Cutting Plane Algorithm - example

basis| #; x9 s s9 | rhs
28 15

7 1 7

€Ty 0 1 Ep) 29 3

1 3 9

a1 0 5 m | 3

Cutting Plane Algorithm - example

minz = —18x; — 12x,
st 2x1—x, <5
2x1 + 3x, <13
X1, X, = 0 and integer

