
UTS CRICOS
00099F

Introduction to Optimisation:

Integer
Programming

Lectures 10-11

Lecture notes by Dr. Julia Memar and Dr. Hanyu Gu and with an
acknowledgement to Dr.FJ Hwang and Dr.Van Ha Do

Introduction
➢ An integer program (IP) is a mathematical programming problem in which

some or all of the variables are required to be integers.

➢ An IP is called

• a pure IP if all variables are required to be integers,

• a 0-1 IP or binary IP if all variables must be 0 or 1, and

• a mixed IP (MIP) if some of the variables are required to be
integers.

➢ There is no “nice” optimality conditions as for LP and NLP

Branch-and-bound algorithm
Branch-and-bound method:

➢ The feasible region 𝑆 is replaced by smaller problems 𝑆𝑖- branching.

➢ Each 𝑆𝑖 is a basis of another branching

Branch-and-bound algorithm
Pruning:

To avoid enumeration of all solutions, the search tree is ”pruned” and the
following assumptions are made:

➢ there is an algorithm to calculate lower bound 𝐿𝑖 on objective values of
feasible solutions of a subproblem 𝑆𝑖

➢ the upper bound U of objective value on S can be obtained as an objective
value on some solution

➢ If for a subproblem 𝑆𝑖

𝐿𝑖 ≥ 𝑈

then 𝑆𝑖 can/can not improve the objective
value on 𝑆, hence

➢ LP relaxation – the integer requirement
is ignored/relaxed

Branch-and-bound algorithm
Pruning:

To avoid enumeration of all solutions, the search tree is ”pruned” and the
following assumptions are made:

➢ there is an algorithm to calculate lower bound 𝐿𝑖 on objective values of
feasible solutions of a subproblem 𝑆𝑖

➢ the upper bound U of objective value on S can be obtained as an objective
value on some solution

➢ If for a subproblem 𝑆𝑖

𝐿𝑖 ≥ 𝑈

then 𝑆𝑖 can/can not improve the objective
value on 𝑆, hence

➢ LP relaxation – the integer requirement
is ignored/relaxed

Branch-and-bound algorithm
Branching:

➢ each LP relaxation will represent a node on the solution tree;

➢ solve the LP relaxation corresponding to the current node.

• If in resultant solution 𝑥′ = (𝑥1′, 𝑥2′, … , 𝑥𝑛′) component 𝑥𝑗′ is not integer,
then branch on this node by adding constraint

either 𝑥𝑗 ≥ 𝑥𝑗′ +1 or 𝑥𝑗 ≤ 𝑥𝑗′ ;
• If resultant solution 𝑥′ = (𝑥1′, 𝑥2′, … , 𝑥𝑛′) is integer, it is a candidate

solution.
• If the candidate solution provides so-far the best objective function

value, then it is an incumbent solution.
• Once an integer solution is obtained, there is no further branching on

the current node is required.

Branch-and-bound algorithm
Branching:

➢ each LP relaxation will represent a node on the solution tree;

➢ solve the LP relaxation corresponding to the current node.

• If in resultant solution 𝑥′ = (𝑥1′, 𝑥2′, … , 𝑥𝑛′) component 𝑥𝑗′ is not integer,
then branch on this node by adding constraint

either 𝑥𝑗 ≥ 𝑥𝑗′ +1 or 𝑥𝑗 ≤ 𝑥𝑗′ ;
• If resultant solution 𝑥′ = (𝑥1′, 𝑥2′, … , 𝑥𝑛′) is integer, it is a candidate

solution.
• If the candidate solution provides so-far the best objective function

value, then it is an incumbent solution.
• Once an integer solution is obtained, there is no further branching on

the current node is required.

Branch-and-bound algorithm
Bounding:

➢ If for the current node the LP relaxation provides solution with OF value not

better than the incumbent solution, no further branching required, and the

node is

• Optimality gap is useful in practice for large problems

➢ If the node’s LP is infeasible, the node is

Rules to travel the solution tree:

➢ LIFO rule : Last-In-First- Out (LIFO) rule (depth-first)

➢ The Jumptracking rule: solves all the problems created by a branching and

then branches on the node with the best OF-value (best-first).

➢ Many other rules for variable order and value order

• Active research area to make use of machine learning

Example
➢ 𝑚𝑎𝑥 𝑧 = 8𝑥1 + 5𝑥2 (1)

s.t. 𝑥1 + 𝑥2 ≤ 6
9𝑥1+5𝑥2 ≤ 45
𝑥1, 𝑥2 ≥ 0, integer

➢ Solve the problem graphically:

Example
➢ 𝑚𝑎𝑥 𝑧 = 8𝑥1 + 5𝑥2 (*)

s.t. 𝑥1 + 𝑥2 ≤ 6
9𝑥1+5𝑥2 ≤ 45
𝑥1, 𝑥2 ≥ 0, integer

Solve the problem with branch-n-bound algorithm:

Node 1 (Subproblem 1): Solve (*) ignoring integer constraint:

➢ 𝑚𝑎𝑥 𝑧 = 8𝑥1 + 5𝑥2 (*)
s.t. 𝑥1 + 𝑥2 ≤ 6

9𝑥1+5𝑥2 ≤ 45
𝑥1, 𝑥2 ≥ 0, integer

Example – solution tree

UB=40,LB=40

UB=40.5556

UB=41

UB=41.25

II

Combinatorial Optimisation problems
➢ Solution has a combinatorial structure, e.g., an object on a graph; the

number of solutions increase exponentially fast

➢ Can be solved as Mixed Integer Program(MIP), but not efficient for large
problems; active research area:

• Knapsack problem

• Assignment problem

• Travelling salesman problem

Knapsack problem
There is a knapsack with a capacity of 14 units. There are 4 items, each of which retains

a size and a value, e.g. item 1 has a size of 5 units and a value of 16 dollars, item 2 has

a size of 7 units and a value of 22 dollars, item 3 has a size of 4 units and a value of 12

dollars, and item 4 has a size of 3 units and a value of 8 dollars. The objective is to

decide which items shall be packed in the knapsack so as to maximise the total value of

items in the knapsack. Then the knapsack problem can be formulated as follows:

➢ 𝑚𝑎𝑥 𝑧 = 16𝑥1 + 22𝑥2 + 12𝑥3 + 8𝑥4

s.t. 5 𝑥1 + 7𝑥2 + 4𝑥3 + 3𝑥4 ≤ 14

𝑥1, 𝑥2, 𝑥3, 𝑥4 ≥ 0 and _____________

III

Knapsack problem
There is no need to use Simplex algorithm ☺

➢ Finding ratio and placing first the item with

then till only part fits

Solution:

➢ Branching:

Subproblem 2 or Subproblem 3
𝑚𝑎𝑥 𝑧 = 16𝑥1 + 22𝑥2 + 8𝑥4 +

s.t. 5 𝑥1 + 7𝑥2 + 3𝑥4 ≤ 14 −

𝑥1, 𝑥2, 𝑥4 𝑎𝑟𝑒 𝑏𝑖𝑛𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

III

Knapsack problem:
solution tree

Assignment problem - example
A manufacturing factory has four machines which can process four sorts of

tasks to be completed. The time required to set up each machine for

completing each job is shown in the table below. Any machine which has been

assigned to process a task cannot be reassigned to another task. The factory

manager aims to minimise the total setup time needed to complete four jobs

with these four machines.

How many possible
assignments are
there?

Assignment problem - example
Formulation: Let 𝑥𝑖𝑗 =

𝑚𝑖𝑛 𝑧 =

s.t.

Assignment problem - example
➢ Totally unimodular matrix: matrix A is totally unimodular (TU) if every square

submatrix of A has determinant −1, 0 or +1

A =
x_11 x_12 x_13 x_14 x_21 x_22 x_23 x_24 x_31 x_32 x_33 x_34 x_41 x_42 x_43 x_44

i=1 1 1 1 1

i=2 1 1 1 1

i=3 1 1 1 1

i=4 1 1 1 1

j=1 1 1 1 1

j=2 1 1 1 1

j=3 1 1 1 1

j=4 1 1 1 1

Assignment problem - example
➢ Extreme points of LP are integral if A is unimodular and b is integral

➢ Network flow problem, shortest path

➢ Simplex algorithm can find optimal solution for the assignment problem,

i.e., no need for B&B!

➢ Simplex algorithm is/is not polynomial…

➢ Can be solved by “Hungarian method” in polynomial time

Hungarian method

Theorem: If a number is added to or subtracted from all of the entries of any

one row or column of a cost matrix, then on optimal assignment for the

resulting cost matrix is also an optimal assignment for the original cost matrix.

Hungarian method
The following algorithm applies the above theorem to a given 𝑛 × 𝑛 cost matrix to find an
optimal assignment.

Step 1. Subtract the smallest entry in each row from all the entries of its row.

Step 2. Subtract the smallest entry in each column from all the entries of its column.

Step 3. Draw lines through appropriate rows and columns so that all the zero entries of
the cost matrix are covered and the minimum number of such lines is used.

Step 4. Test for Optimality:

(i) If the minimum number of covering lines is n, an optimal assignment of
zeros is possible and we are finished.

(ii) If the minimum number of covering lines is less than n, an optimal

assignment of zeros is not yet possible. In that case, proceed to Step 5.

Step 5. Determine the smallest entry not covered by any line. Subtract

this entry from each uncovered row, and then add it to each covered

column. Return to Step 3.

Hungarian method
Row min

Column
min

Hungarian method
Row min

Column
min

Travelling salesman problem
➢ Starting from home city, a travelling salesman must travel to each of 𝑚

cities exactly once before returning home. There is a cost 𝑐𝑖𝑗∗ associated

with a travel from city 𝑖 to city 𝑗. Find the route minimizing the total trip

cost.

Travelling salesman problem
Formulation:

Let 𝑥𝑖𝑗 =

𝑐𝑖𝑗 =

𝑚𝑖𝑛 𝑧 =

s.t.

Issues:

In many cases, combinatorial optimisation problem is easy to state, but hard
to model.

Travelling salesman problem –
➢ Can be solved by combination of Hungarian and branch-and –bound algorithm

➢ Heuristics are important to get good UB: classic Christofides Algorithm

➢ Local search: k-opt of Lin and Kernighan, LKH

➢ Metaheuristic, Matheuristic, nature inspired algorithms, AI/machine learning,

➢ Strong relaxation for LB: Held-Karp LP

➢ Cutting Planes

TSP inspires many research directions for Combinatorial Optimasation

Cutting Plane Algorithm

Separation algorithm
Separation as hard as optimisation:

• Given a (an arbitrary) 𝑥 ∈ 𝑃\𝑃𝐼, find an
inequality that separates 𝑥 from 𝑃𝐼

General cuts
Special cuts

Cutting Plane Algorithm
Consider 𝑚𝑖𝑛(𝑜𝑟 max) 𝑧 = 𝑓(𝑥)

s.t. 𝐴𝑥 = 𝑏,
𝑥 ≥ 0 and integer

Step 1. Solve LP relaxation with Simplex. In the optimal tableau select row with non-integer RHS:

Step 2. Rearrange as follows – terms with integer coefficients on LHS and fractional coefficient – on
RHS:

And introduce the “cut”:

Observe that the “cut” will make the optimal non-integer bfs infeasible:

Note: we can select a row from the original formulation or the linear combination and apply the same rounding technique

Step 3 Add the cut to the constraints, introduce new slack variable 𝑥𝑘 and use Dual Simplex method to
solve the subproblem. Choose non –integer RHS, and make another cut.

Cutting Plane Algorithm - example
𝑚𝑎𝑥 𝑧 = 8𝑥1 + 5𝑥2

s.t. 𝑥1 + 𝑥2 ≤ 6
9𝑥1 + 5𝑥2 ≤ 45
𝑥1, 𝑥2 ≥ 0 and integer

➢ Standard form:

Cutting Plane Algorithm - example

Cutting Plane Algorithm - example
𝑚𝑎𝑥 𝑧 = 7𝑥1 + 9𝑥2

s.t. −𝑥1 + 3𝑥2 ≤ 6
7𝑥1 + 𝑥2 ≤ 35
𝑥1, 𝑥2 ≥ 0 and integer

➢ Optimal tableau:

Cutting Plane Algorithm - example

Cutting Plane Algorithm - example

𝑚𝑖𝑛 𝑧 = −18𝑥1 − 12𝑥2
s.t. 2𝑥1 − 𝑥2 ≤ 5

2𝑥1 + 3𝑥2 ≤ 13
𝑥1, 𝑥2 ≥ 0 and integer

