UTS

Introduction to Optimisation:

Integer
Programming

Lectures 10-11

Lecture notes by Dr. Julia Memar and Dr. Hanyu Gu and with an
acknowledgement to Dr.FJ Hwang and Dr.Van Ha Do

S

¢
¢

Introduction

» An integer program (IP) is a mathematical programming problem in which
some or all of the variables are required to be integers.

» An IP is called
*a pure_IE if all variables are required to be integers,

* a 0-1 IP or binary IP if all variables must be 0 or 1, and
* a mixed IP if some of the variables are required to be

Feas. régeon of

integers. LP relaymtion
» There is no “nice” optimality conditions as for LP.and NLP (ﬂ’fjg{a)/’“*%J
‘ Lr

min § CiXj ~N A e e e e Feal. ng/fOfr\,
I fx f T P

n
s.t. Za,-jxjgb,-. i=1,---.m
J

X Integer

HUTS

Branch-and-bound algorithm

Ky
Branch-and-bound method: S 2
’ § = §| O 59\,
» The feasible region S is replaced by smaller problems S;- branching.
» Each §; is a basis of another branching Le = - fgﬁe
.. 0
tem 6 varianles
() p wamber, of poss S
5 x=0 x,=1 <. (5 2
Z-(llx;eso(@ ‘
x, =0 X, =1 X, =0 X, =
X, |;F|X€M é_ Kodes

m LKA A

(ewJQS ~wodel wifhowt branched

£UTS

Branch-and-bound algorithm

Pruning:

To avoid enumeration of all solutions, the search tree is "pruned” and the
following assumptions are made:

» there is an algorithm to calculate lower bound L; on objective values of
feasible solutions of a subproblem §;

» the upper bound U of objective value on S can be obtained as an objective

valu? on some solution f moay problem
n Probl em i feoumed Hleat
Acs wmed frat p UBY Coun be Obiained
v LR Cany be bbtaineed . dor each nooe

nﬁor e ot o Vbo(ﬂe, L

\
o, Thenw LB. 2% < UB i“;% *#ie/s% feas. -

apﬁm&f &

| LB £ ¥ s us;
some fek%\ L
S-n bect e

$UTS AV (v

Branch-and-bound algorithm

_ A ve
Pruning: u B
LB
LBy LBi*l
g, 2 UB — ag avy fue
! L+1) node
L L‘Biﬂ - olo
» ITTOr a suppropiem J»;
L,=U

then S; can/can not improve the objective
value on S, hence

» LP relaxation — the integer requirement
is ignored/relaxed 5 LP

i
Ciy%ﬂ

i+ Up,, <LB — stop, P
Lurtier bran cfxu‘ruzJr

Mooy p oo blen

UB :
LR

”BE+1

rfiey brahch ng 0

Cam peo+t PW‘O&L{,{(’Q 0F va (we
wot Braey e Purtuer, préuc

_—
\ [P relaxation

$IP
M G i(mblw 2 £ 2
’fT = 2* cuwn be uted as L&

2

- N

Branch-and-bound algorithm

Branching:
» each LP relaxation will represent a node on the solution tree;

» solve the LP relaxation corresponding to the current node.

* Ifin resultant solution x" = (x;',x;/, ..., x,") component x; is not integer,
then branch on this node by adding constraint

either x; = [xj'LJPJerg;xgpi %]

S = | <= cor et ho ole
L= & NoT Fearn. &y TP -
{/—/l L\ » bramed

E_ -2 e o= 2

2 | U

Branch-and-bound algorithm

Bounding:

> |If for the current node the LP relaxation provides solution with OF value not
better than the incumbent solution, no further branching required, and the

node is

« Optimality gap is useful in practice for large problems
> If the node’s LP is infeasible, the node is
Rules to travel the solution tree:
» LIFO rule : Last-In-First- Out (LIFO) rule (depth-first)
» The Jumptracking rule: solves all the problems created by a branching and
then branches on the node with the best OF-value (best-first).

» Many other rules for variable order and value order

» Active research area to make use of machine learning

HUTS

Example

» max z = 8x; + 5x,
S.t. X1 + X9 <6
9X1+5x2 < 45

x1,%z 2 OiniSgEm’

» Solve the problem graphically:

(1)

x+y<6] B3 o
ZQ 9x + 5y < 45
(3.75,2.25) Cdfc
|
—

(&xats on mex 2 = %('SA : q)
Coxy LP v

Example

» max z = 8xq + 5x, (%)
st. x1+x,<6
9x1+5x, < 45
X1, X, = 0, integer

Solve the problem with branch-n-bound algorithm:

Node 1 (Subproblem 1): Solve (*) ignoring integer constraint:

> maxz=8x; +5x, —> Frem Tul Y 2= 4128 - U8,
S.t. X1 + X <6 3r&/p}1 T ¥LP _ _aff:

9X1+5x2 < 45 X B o s 'peéb,\.

X1, X, = 0, integer /q for IP
Subproblem 2 quProb/e,mg
kfi,@j\/ o <L§J :

@UTS - add fo cowso\/anvdf -

1O 0ris nat (‘;(') /

Cow & Hat wht¢

Tr=s I
Lp rvelaxion %2 =0
Subproblem 1|
Example — solution tree - 2] | UB=4125
mr =12 ot gy @ 17
max z = 8x; + 5x, —> :L'z=% (
B

st X +tx, <6
9x1+5x, < 45

=
3 — em e e - —— LY ol
oF ',ey/\ \ % G
y U
Lp trelax. o
Subproblem 3

X1,%, = 0, integer
Subproblem 2
= 37
2417, |UB=41 =3
it =2 Ty =4 reus. Ty — 3 it =17
Ls'?_,“a;:% &f‘” szB:m
'S
Subproblem H: o~
LS ! -
Qx'fr(' COoON QQY'M y P celax.
x, 24 congra dAet Subproblem 5
a.l 7 21, conefrat wt Qs Subproblem 4 . UB=40 5556
* it — 3 Infeasible (9]¢ py a0t | [it=24
Dx;+x,<6 Yo | a 1 g
1)9x, +5x, < 45 A A 4y T2 = 1J%p
1= No_ Sug-tler | L
1) Ut 2 26 3 oA, +Xy =6 bramwhing 4‘7 -g‘\
A4+, 26 &, \ o
Subproblem 6 Subproblem 7
Feafible
- xl == 5 IP Il =S -
it=2>5 P Ty — 1 it ==6
Incumbent solution » < LB — 40
UB=40,LB=40
NO Twriver Brameming, #¢ UB =1B

‘ Q?lw{—-{w\ of LP relox.
¥ves LB on tule wode
« 0N Twie node YB=LR~ no fwurtlev branchin

¢ Deph Keet » F woolet

® %M ‘Hf%‘]‘ - 3 Mdeg

Combinatorial Optimisation problems

» Solution has a combinatorial structure, e.g., an object on a graph; the
number of solutions increase exponentially fast

» Can be solved as Mixed Integer Program(MIP), but not efficient for large
problems; active research area:

£UTS

Knapsack problem
Assignment problem

Travelling salesman problem

5 Minimization of the maximum weighted lateness

Consider the P|prec, pj = 1|F scheduling problem with the objective function

F(x1,....xp) = max w;(x; —d;), (6)
1<j<n

where integer d; is a due date for completion of task j (the desired time by which
task j needs to be completed) and w; is a positive weight. Given this interpretation
and the notation introduced in Sect. 3.1, the considered problem requires to minimize
the maximum weighted lateness for the set of tasks with zero release times which are
to be scheduled on m parallel identical machines without any restriction on the ma-
chines’ availability. An approach similar to one discussed below was briefly outlined
in Zinder (2007). Li= WY -wdy £

]

Cj 1l
Knapsack problem Cap ity

There is a knapsack with a capacity of 14 units. There are 4 items, each of which retains
a size and a value, e.g. item 1 has a size of@nits and a value of 16 dollars, item 2 has
a size of nits and a value of 22 dollars, item 3 has a size o@mits and a value of 12
dollars, and item 4 has a size of@mits and a value of 8 dollars. The objective is to
decide which items shall be packed in the knapsack so as to maximise the total value of

items in the knapsack. Then the knapsack problem can be formulated as follows:

. = L1, M Ftem L g win' | > 5y
: o Oy wise value| |6 22 12 2
» max z = 16x; + 22x, + 12x3 + 8x,4 S{2E€ | S = h 3
| 22 8

st. 5x;+ 7x,+4x3+ 3x, < 14 RoTo) 5L 31 3 =
3 2.3

X1,X2,X3,%4 = Oand _binary

Ligt 12, 2 4

HUTS

[2 3 b

w'\me A 22 2 B
Knapsack problem RS i ! 83
Ratol|dL TF 3 3
There is no need to use Simplex algorithm © 33 23
» Finding ratio Z?(;; and placing first the item with {g1esT rati0
then witn 2™% wvect ratio till only part fits
Solution: -ieT @ 4.2, 3,4
» Branching:
Subproblem 2 or Subproblem 3

max z = 16xq + 22x, + 8x4 +
st 5x;+7x,+3x, <14 —

X1, X2, X4 are binary variables

HUTS

Subproblem [List 12, 2 Y

TN Qa{)ad*‘? 2f = leta22+512+ gxp = 44 — upper
Xy = | S b@umdg
| =
¥y = | T os weﬂ relaxe &
XB :__1_ 9 n\ox\r\&/(\& veq-+t
4 for Xa
W = O Fa e on 2C '—9
[>tclira=nc\;h|ng. cog e valud X3= O
Subproblem 2 or ubproblem 3
max z = 16x; + 22x, + 8x4 + 12 x| max z = 16x; + 22x, + 8x4 -
_ 1j(si2€ of)
st 5x;+7x, +3x, < 14 (—I(Q\;‘b © St 5xi+ 7%, + 3%, < 14
X1,Xo, X4 are binary variables . 3 .
N Capacity 5= 4a/y TR E %
[_s x(= | ¢
'.)C3 = | 7_
Tﬁ(=1 5 31): ‘
- -5 g v d F wmade, x. =0 P
2% q, - Haue onlj, S > _ 2
Y 12

2% = yo
*1=0Y ko = Xy = Xy = |

Subprobler) 1
u — “u
Knapsack problem: c—at | = [u®
L it =1 T :Izzl Mot
solution tree s..p. v r 1 oo Paxe
IN -
A, =1 + : .y
X, = 3 $ ‘
X,~O) O Subproblem 2
7 U ©
it =17 us > LB -
0 Reop branching

=
(33
W \\
o
Subproblem 5 Subproblem 8
z =36 2 =38 feay. W
71 =_ Ty =T2=1 e best
- Ty = 1 Ty = T4 = 0
2 < LB =42,
Furfuer oramemn
e o g
T4 = 1
Subproblem 6 Subproblem 9 ok
2 = Subproblem 7 2 — 428 uB =12 = 42
it =4 .—_“_1 [it =5 Infeasible r=1,2=1% o durtuer
T bramenin
Incumbent solution 23 =0.74=1 M‘*”‘ ing,
LB — 42 |2) =42 < LB = 42[X] e -5 o
5 Can wet be
+ I MOEYO0Ue

&
as UB=LR =Y

Assignment problem - example

A manufacturing factory has four machines which can process four sorts of
tasks to be completed. The time required to set up each machine for
completing each job is shown in the table below. Any machine which has been
assigned to process a task cannot be reassigned to another task. The factory
manager aims to minimise the total setup time needed to complete four jobs

with these four machines.

Time (Hours)

Machine Task 1 Task 2 Task 3 Task 4
How many possible - -
assignments are ! 14 5 8 7
there? 9 9 19 G K
3 7 8 3 0

4 2 ! 6 10

HUTS

Assignment problem - example ,
g P A YY\E@JMVLQ, . does :)ij

Formulation: Let x;; =

"

O e w182
"* Hme | ' '
se)t wﬁ‘\)&mw ¢ for)job
mmz— 0
! , .
s.t. Z 2, Qij DQ[J
1= J:
S "t, Fov Qa th O e e Qggi%/w oK Job ‘DV\\‘%
g
ot =44 2wy =1 e (%)
J—1
Coah Task o, be Qégewd +o one
maiane onl
: i (% %)
QQV \)Z\ L\ Z ILJ _":|

Assignment problem - example

» Totally unimodular matrix: matrix A is totally unimodular (TU) if every square
submatrix of A has determinant -1, 0 or +1

mareiy of X 11 [x 12X 13X 14 |x 21 |x 22 [x 23 |x 24 [x 31 |x 32 [x 33|x 34 |x 41 |x 42 |x 43 [x 44
tbvx'\'revlvd's(éﬂ
= i=1 1 1 1 1
i=2 1 1 1 1
(»e)
i=3 1 1 1 1
i=4 1 1 1 1
(\
=1 1 1 1 1
”< =2 1 1 1 1
(%%
=3 1 1 1 1
\'=4 1 1 1 1
c= 15 :C'\ N x(1+1\3+xl“{ = |
J =) E TR FU T SYRL o S

Assignment problem - example
» Extreme points of LP are integral if A is unimodular and b is integral

» Network flow problem, shortest path
» Simplex algorithm can find optimal solution for the assignment problem,
I.e., no need for B&B!

» Simplex algorithm is/is not polynomial...

» Can be solved by “Hungarian method” in polynomial time

O(n*)

HUTS

Hungarian method

Theorem: If a number is added to or subtracted from all of the entries of any
one row or column of a cost matrix, then | optimal assignment for the

resulting cost matrix is also an optimal assignment for the original cost matrix.

Ly)

4 5 S 7
2 12 6 5
78 3 9
2 4 6 10

HUTS

MY 1Y m %M

Hungarian method

1. Find the minimum element in each row of the cost matrix. Construct a new matrix by
subtracting from each cost the minimum cost in its row. For this new matrix, find the
minimum cost in each column. Construct another new matrix (called the reduced
cost matrix) by subtracting from each cost the minimum cost in its column.

2. Draw the minimum number of lines (horizontal, vertical, or both) that are needed to
cover all the zeros in the reduced cost matrix. If m lines are required, then an optimal
solution is available among the covered zeros in the matrix. If fewer thar@\lines are
needed, then go to Step 3.

3. Among all elements in the reduced cost matrix that are un-covered by the lines
drawn in Step 2, find the smallest nonzero element, say c,. Construct a new reduced
cost matrix by

» subtracting c, from each uncovered element of the reduced cost matrix;
» adding ¢, to each element of the reduced cost matrix that is covered by two lines.

4. Go to step 2

EUTS

Hungarian method

Column
min

£UTS

. = Y

10

| L S K
2L [2 S
F 3 1
2 Y | 0
9 O 2
O e 3
4 S 6
D 2 8
0 U =

ROW Min

I

2
3
L

Hungarian method r=educed cosd -madrix

Row min
3 lines< Y
- O 3 O I
9 Ay Y |
LI C @ i n NOT-
H coveae d
0 L I G @
Qg l 2 3 “f .
U |ineg
M ot neg | [O —) L[oxre reguireo
5] O q L]f C +o Covea
all 2ero
S E— : . 2 >
1 | HT <
Column . Among all elements in the reduced cost matrix that are un-covered by the lines
min drawn in Step 2, find the smallest nonzero element, say c,. Construct a new reduced
cost matrix by
» subtracting ¢, from each uncovered element of the reduced cost matrix;
$UTS » adding ¢, to each element of the reduced cost matrix that is covered by two lines.
- = X . = ~ - all ofler
Xll - i)C‘S} \ | ‘ xl{\ - l D) A = O

Hungarian method

reduced cost -madrix

Row min

3 lines< Y
J

iy n NOT-

covene 4

€y

qé O B(/ O
9 Ay Y |
1 S O 4
0 2L 1 -
4 10 0 EN 0
V4
g 3 - 10 3 Y ©
Y 3 H - D 3
£
~1 0 \- 3 4 S
> 0
<
3 Ef Determine the smallest entry not covered by any line. Subtract *
(%4)
§ % this entry from each uncovered row, and then add it to each covered ¢
g | column. Return to Step 3.
ZU1S

