
UTS CRICOS
00099F

Introduction to Optimisation:

Integer
Programming

Lectures 10-11

Lecture notes by Dr. Julia Memar and Dr. Hanyu Gu and with an
acknowledgement to Dr.FJ Hwang and Dr.Van Ha Do

Introduction
➢ An integer program (IP) is a mathematical programming problem in which

some or all of the variables are required to be integers.

➢ An IP is called

• a pure IP if all variables are required to be integers,

• a 0-1 IP or binary IP if all variables must be 0 or 1, and

• a mixed IP (MIP) if some of the variables are required to be
integers.

➢ There is no “nice” optimality conditions as for LP and NLP

Feas region ofLP relaxation
Ethereality

Ln

region

Branch-and-bound algorithm
Branch-and-bound method:

➢ The feasible region 𝑆 is replaced by smaller problems 𝑆𝑖- branching.

➢ Each 𝑆𝑖 is a basis of another branching

5 52
5 5 US

x 819am

6 variables

5 _a
mymbess

of poss S n

Exia

zistixey Nodes
branches

Fixed
4

leaves nodes without branches

Branch-and-bound algorithm
Pruning:

To avoid enumeration of all solutions, the search tree is ”pruned” and the
following assumptions are made:

➢ there is an algorithm to calculate lower bound 𝐿𝑖 on objective values of
feasible solutions of a subproblem 𝑆𝑖

➢ the upper bound U of objective value on S can be obtained as an objective
value on some solution

➢ If for a subproblem 𝑆𝑖

𝐿𝑖 ≥ 𝑈

then 𝑆𝑖 can/can not improve the objective
value on 𝑆, hence

➢ LP relaxation – the integer requirement
is ignored/relaxed

max problem
assmtledPI.IT Assumed that

UB can be obtained
LB can be obtained
for each node i

for each node

1
LB bestfeas.s uThen LB ptmafUB so for

some feas LB W UB
s n best
so far

Branch-and-bound algorithm
Pruning:

To avoid enumeration of all solutions, the search tree is ”pruned” and the
following assumptions are made:

➢ there is an algorithm to calculate lower bound 𝐿𝑖 on objective values of
feasible solutions of a subproblem 𝑆𝑖

➢ the upper bound U of objective value on S can be obtained as an objective
value on some solution

➢ If for a subproblem 𝑆𝑖

𝐿𝑖 ≥ 𝑈

then 𝑆𝑖 can/can not improve the objective
value on 𝑆, hence

➢ LP relaxation – the integer requirement
is ignored/relaxed

max problem

43

o Bit Bitz

if 4Bi LB stop no

Bit Bitz further branching
F Bix UB as any further branching on

it 1 node can not produce Of value

LBi do not Branch further pran

IP

LP relaxationmax problem EEE used as UB
min problemz IP ILP can be used as LB

Branch-and-bound algorithm
Branching:

➢ each LP relaxation will represent a node on the solution tree;

➢ solve the LP relaxation corresponding to the current node.

• If in resultant solution 𝑥′ = (𝑥1′, 𝑥2′, … , 𝑥𝑛′) component 𝑥𝑗′ is not integer,
then branch on this node by adding constraint

either 𝑥𝑗 ≥ 𝑥𝑗′ +1 or 𝑥𝑗 ≤ 𝑥𝑗′ ;
• If resultant solution 𝑥′ = (𝑥1′, 𝑥2′, … , 𝑥𝑛′) is integer, it is a candidate

solution.
• If the candidate solution provides so-far the best objective function

value, then it is an incumbent solution.
• Once an integer solution is obtained, there is no further branching on

the current node is required.

É É current node

bYneñeas for IP

Branch-and-bound algorithm
Bounding:

➢ If for the current node the LP relaxation provides solution with OF value not

better than the incumbent solution, no further branching required, and the

node is

• Optimality gap is useful in practice for large problems

➢ If the node’s LP is infeasible, the node is

Rules to travel the solution tree:

➢ LIFO rule : Last-In-First- Out (LIFO) rule (depth-first)

➢ The Jumptracking rule: solves all the problems created by a branching and

then branches on the node with the best OF-value (best-first).

➢ Many other rules for variable order and value order

• Active research area to make use of machine learning

Example
➢ 𝑚𝑎𝑥 𝑧 = 8𝑥1 + 5𝑥2 (1)

s.t. 𝑥1 + 𝑥2 ≤ 6
9𝑥1+5𝑥2 ≤ 45
𝑥1, 𝑥2 ≥ 0, integer

➢ Solve the problem graphically:

Example
➢ 𝑚𝑎𝑥 𝑧 = 8𝑥1 + 5𝑥2 (1)

s.t. 𝑥1 + 𝑥2 ≤ 6
9𝑥1+5𝑥2 ≤ 45
𝑥1, 𝑥2 ≥ 0, integer

➢ Solve the problem graphically:

r

Eliminate

y
What

a

For LP relax.it ntaxE z 15
4

1

21 41.25

Example
➢ 𝑚𝑎𝑥 𝑧 = 8𝑥1 + 5𝑥2 (*)

s.t. 𝑥1 + 𝑥2 ≤ 6
9𝑥1+5𝑥2 ≤ 45
𝑥1, 𝑥2 ≥ 0, integer

Solve the problem with branch-n-bound algorithm:

Node 1 (Subproblem 1): Solve (*) ignoring integer constraint:

➢ 𝑚𝑎𝑥 𝑧 = 8𝑥1 + 5𝑥2 (*)
s.t. 𝑥1 + 𝑥2 ≤ 6

9𝑥1+5𝑥2 ≤ 45
𝑥1, 𝑥2 ≥ 0, integer

Frhpn.then Z 41.25 UB

Tf not feas
for IP

subp m 2 problem

E.fi aanEintocoEsifiaat

Example – solution tree

UB=40,LB=40

UB=40.5556

UB=41

UB=41.25

II

relaxion.it
II40

notfeas for IP

fa.fi
1

it cestants
yakking

area

a

iforiginal
1 1 4No further

4 226 11 22 6 j y7121226

1901 5012 36 10 46 45 9 for Feasible

Sleuthapp ofLPrelax
Nofurtherbranching as4B LB

Asthe LPrelaxn
s n is Integer
gives LB
on this node UB LB nofurtherbranchin

Depth first 7 nodes

Best first 3 modes

g

Combinatorial Optimisation problems
➢ Solution has a combinatorial structure, e.g., an object on a graph; the

number of solutions increase exponentially fast

➢ Can be solved as Mixed Integer Program(MIP), but not efficient for large
problems; active research area:

• Knapsack problem

• Assignment problem

• Travelling salesman problem

g

Knapsack problem
There is a knapsack with a capacity of 14 units. There are 4 items, each of which retains

a size and a value, e.g. item 1 has a size of 5 units and a value of 16 dollars, item 2 has

a size of 7 units and a value of 22 dollars, item 3 has a size of 4 units and a value of 12

dollars, and item 4 has a size of 3 units and a value of 8 dollars. The objective is to

decide which items shall be packed in the knapsack so as to maximise the total value of

items in the knapsack. Then the knapsack problem can be formulated as follows:

➢ 𝑚𝑎𝑥 𝑧 = 16𝑥1 + 22𝑥2 + 12𝑥3 + 8𝑥4

s.t. 5 𝑥1 + 7𝑥2 + 4𝑥3 + 3𝑥4 ≤ 14

𝑥1, 𝑥2, 𝑥3, 𝑥4 ≥ 0 and _____________

III

capacity

O
O O

O

ki 2 if item i is in
otherwise É

ratio 3.2 3

binary

List 1 2 3 4

Knapsack problem
There is no need to use Simplex algorithm ☺

➢ Finding ratio and placing first the item with

then till only part fits

Solution:

➢ Branching:

Subproblem 2 or Subproblem 3
𝑚𝑎𝑥 𝑧 = 16𝑥1 + 22𝑥2 + 8𝑥4 +

s.t. 5 𝑥1 + 7𝑥2 + 3𝑥4 ≤ 14 −

𝑥1, 𝑥2, 𝑥4 𝑎𝑟𝑒 𝑏𝑖𝑛𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

III

feratio 3.2 3

YEE highest ratio

with 2ⁿᵈ best ratio
List 1 2 3 4

Subproblem List 1,2 3 4

EY
16
22 upper

bounds
as we relaxed
binary req t

3 for 3

FIG
23 1 Isralug 23 0

Ii ot

capacityIN capacity 2 4357
5

22 1 7
f retinist 3 0

74 0 Ky 3

Knapsack problem:
solution tree p

715172 Xs Xy 1

asible

ittiiiI
mn

YoÑ Ñ
Jetas Essene

time

ee

taaifE
an.EEE i

Assignment problem - example
A manufacturing factory has four machines which can process four sorts of

tasks to be completed. The time required to set up each machine for

completing each job is shown in the table below. Any machine which has been

assigned to process a task cannot be reassigned to another task. The factory

manager aims to minimise the total setup time needed to complete four jobs

with these four machines.

How many possible
assignments are
there?

4 1 2 3 4
In general
h

Assignment problem - example
Formulation: Let 𝑥𝑖𝑗 =

𝑚𝑖𝑛 𝑧 =

s.t.

1 if machine i does job
otherwise

Cij getYPactn.me i for job

EI Ei cijki

5 t For each machine assign one job only

for 1 1 4 1 xij x

each task can be assegned to one

machine only
for 5 1 4 1 dig I

1 1

Assignment problem - example
➢ Totally unimodular matrix: matrix A is totally unimodular (TU) if every square

submatrix of A has determinant −1, 0 or +1

A =
x_11 x_12 x_13 x_14 x_21 x_22 x_23 x_24 x_31 x_32 x_33 x_34 x_41 x_42 x_43 x_44

i=1 1 1 1 1

i=2 1 1 1 1

i=3 1 1 1 1

i=4 1 1 1 1

j=1 1 1 1 1

j=2 1 1 1 1

j=3 1 1 1 1

j=4 1 1 1 1

cottinets x

00 0 0
1 1 0 00

0 0

ex

1 I t 2,2 D z t X y 1

j 1 Xp 712 93 My I

Assignment problem - example
➢ Extreme points of LP are integral if A is unimodular and b is integral

➢ Network flow problem, shortest path

➢ Simplex algorithm can find optimal solution for the assignment problem,

i.e., no need for B&B!

➢ Simplex algorithm is/is not polynomial…

➢ Can be solved by “Hungarian method” in polynomial time

O m

Hungarian method

Theorem: If a number is added to or subtracted from all of the entries of any

one row or column of a cost matrix, then on optimal assignment for the

resulting cost matrix is also an optimal assignment for the original cost matrix.

1

What is cost matrix

Hungarian method
1. Find the minimum element in each row of the cost matrix. Construct a new matrix by

subtracting from each cost the minimum cost in its row. For this new matrix, find the
minimum cost in each column. Construct another new matrix (called the reduced
cost matrix) by subtracting from each cost the minimum cost in its column.

2. Draw the minimum number of lines (horizontal, vertical, or both) that are needed to
cover all the zeros in the reduced cost matrix. If m lines are required, then an optimal
solution is available among the covered zeros in the matrix. If fewer than m lines are
needed, then go to Step 3.

3. Among all elements in the reduced cost matrix that are un-covered by the lines
drawn in Step 2, find the smallest nonzero element, say 𝑐0. Construct a new reduced
cost matrix by

➢ subtracting 𝑐0 from each uncovered element of the reduced cost matrix;
➢ adding 𝑐0 to each element of the reduced cost matrix that is covered by two lines.

4. Go to step 2

matrix mxm

Hungarian method
Row min

Column
min

m 4

14 5 8 7 5

2 12 6 5 2

7 8 3 9 3

2 4 6 10 2

9 0 3 2

10 4 3
4 5 0 6

0 2 4 8
0 0 2

Hungarian method
Row min

Column
min

reduced cost matrix

1 0 3 6 3 linescy
10 4 I mith

Not
4 5 4 covered
0 2 6

maths
3

unines

ff
12 1 133 1 224 1 24 1 the

Hungarian method
Row min

Column
min

reduced cost matrix

1 0 3 6 3 linescy
10 4 I mith

Not
4 5 4 covered
0 2 6

i

9 10 0 3 4 0

1 0 9 3 4
3 4 4 1 0 3

ifi

