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Standard form

An LP must be presented in the standard form, if we wish to use the Simplex
method

1. all constraints are in the form of equations
2. all variables are nonnegative
3. all rhs are nonnegative

max z (orminz) =cx; + cyxy + -+ cpxp,
S.1. ai1X1 + A12Xy + .-+ A1nXn = bl

aAz1X1 + aAy2X>y + -4 AyxnXn = bz

Am1X1 + A Xo + -+ Apn Xy = by,

X1, X2, ., Xp =0
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Nonnegativity of Decision Variables

» Any urs variable x can be presented as
x=p—q,wherep,q = 0.

» Example: - Set x; = p; — q; and x, = p, — q, .The equivalent LP (**):
minz = 2x; + 30x,
S.t. 4x; +7x, =21
8x, + 5x, >3 ()
6x; +9x, = —2

X1, X UTS
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Nonnegativity of Decision Variables

» Show how to construct a solution for the original problem (*) using an optimal
solution for the equivalent problem (**) — we assume that it exists.

> Will the constructed solution be optimal for (*)?
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Slack and Surplus Variables

» Any inequality constraint can be converted into an equality constraint by
adding slack or subtracting surplus nonnegative variables:

x1—2x2S3 x1—2x2+ =3

I X1, Xy, >0

X1, X =0

2x1 + x5 =3 — 2x1 + xy— =3

X1, X2 =0 X1, X, >0
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Standard form - summary

To bring an LP to the standard form:

> Objective function: if you wish to change objective function from minimisation

(or maximisation) form, multiply it by —1 to convert the objective to a maximisation

(or minimisation) one.

» Constraints: Convert any inequality to an equality constraint by the addition of

slack or surplus variables (as appropriate).
» RHS: If any rhs b; is negative, multiply the whole constraint by —1.

> Variables: Any urs x;can be replaced by two nonnegative variables x; and x";:

h— ,-— 'l
Xj =Xj— X
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Standard form

The LP problem in the standard form:

max z (orminz) =c’x
s.t. Ax = b,
x=0

where x and c are n —dimensional vectors, A iIs an m X n matrix, and b 1S

an m-dimensional vector. Note that b = 0.
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Standard form - assumptions

> We assume that (A|b) is consistent , that is that after application of Gaussian—

Jordan method there are no rows [0 0 0 ...0|c]

» If n > m, then the number of , Is greater than the number of

Then the system has degrees of freedom.

« Give an example of an LP with consistent (A|b) and n > m that’s is infeasible

(without a feasible solution)
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Fundamental Law of LP: definitions

» Convex set. Aset S in n-dimensional space is convex if for any two points x;
and x, from S any point of the line segment connecting x; and x, also belongs to
S. In other words, a set S is a convex set if the line segment joining any pair of
points in S is wholly contained in S.
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Fundamental Law of LP: definitions

» Convex set. For any two points x; and x, in S and a« € (0,1), x* = ax; +
(1 —a)x,:x" €S

A

v
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Fundamental Law of LP: definitions

» Closed half-space: for a given an n-dimensional row vector a and a constant
b, a closed half — space is the set of all vectors (or points) x in n —dimensional
space satisfying ax < b.

» The set of vectors for which ax = b is called the boundary of the closed half-
space. 1

N

v
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Fundamental Law of LP: definitions

» Extreme point: Given a convex set S of n —dimensional vectors, a point x* is
called an extreme point (or a corner point) of S if there are no two points x; and
X, in S and a value ¢ € (0,1), such that

*

x = ax; + (1 — a)x,

Or any line segment which lies in S and contains x* has x* as its end point,
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Exercise

» Give an example of convex set with infinite number of extreme points

» Can you find an extreme point for the closed half space which is a convex set?
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Fundamental Law of LP: main results

» Lemma 1 Every closed half-space is a convex set.

» Lemma 2 The intersection of any collection of convex sets is a convex
set.
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Fundamental Law of LP: main results

» Theorem 1 The feasible set of an LP problem is convex (assuming
empty set is convex).
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Fundamental Law of LP: main results

For all results below we assume that an LP in a standard form

» Lemma 3 If x = 0 is a feasible solution of an LP, then it is an extreme point.

» Lemma 4 For an LP, x # 0 is an extreme point if and only if the columns of A corresponding
to the non-zero x; are linearly independent.

Lemma 5 If the LP is feasible, then it has an extreme point.

» Theorem 2 The feasible region for any LP has a finite number of extreme points.

» Theorem 3 If the feasible set is non-empty and one optimal solution exists to the

LP, then there is an optimal solution at one of the extreme points.

» For an LP, if objective function value is bounded, then optimal solution exists.
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Fundamental Law of LP: main results

Summary of proof:

1. Similar to lemma 4, starting from a feasible solution we can find an extreme point with
better objective function value (choose the direction improving the objective function
value); otherwise the problem is unbounded.

2. If this extreme point is not optimal, we can get a new starting point with better objective
function value. We can repeat the previous step to find a better extreme point.

3. As the number of the extreme points are finite, the procedure will terminate with an
optimal solution.
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Fundamental Law of LP: main results

In general, there may be three cases for the
type of optimal objective function value:

» Finite with at least one optimal solution

» Bounded but not obtainable (consider
.1
min— x> 0)

» Unbounded (therefore no optimal
solution, and may/may not have a
convergent sequence, consider

maxi x > 0)
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Basic Feasible Solution (BFS)

Consider an LP with constraints
Ax = b, (1)

x=0 (2)
Assume that n > m, rank(A4) = m, and the feasible region is not empty.

Basic feasible solution:
» Setn —m components of x, to zero.

» Hence if remaining m columns of A are linearly independent, then there
exists solution.

» Basic feasible solution is the solution for the m
components together with zero components.
» The m components are called basic variables and the zero

components are called non-basic variables
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Basic Feasible Solution (BFS)

» BFS:
(x1, Xy, X3,..., xXn) = ( | ),and A = (
Then (1) can be presented as :
Xp =

7 =
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Basic Feasible Solution (BFS)

Lemma 6 For an LP, x is an extreme point if and only if it is a basic feasible
solution. It is assumed that the LP is in a standard form.

Theorem 4 If the feasible set is non-empty and one optimal solution exists
to the LP, then there is a basic feasible solution giving the optimal value.

» Degeneracy — if more than one bfs represents the same extreme point
of the feasible set — to be discussed later.....
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Basic Feasible Solution (BFS)

> Example: max 5x; + 4x,

S.t. 3X1 + ZXZ <120

X1+ ngso

xX1,%; = 0
» Standard form: max 5x; + 4x, + 0s; + Os,
S.t. 3x1 + sz + S1 = 120

x1+ x2+52:50

xl) x2’ Sl; Sz 2 O

n= M =
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Basic Feasible Solution (BFS)

Possible combinations of potential bfs:
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Basic Feasible Solution (BFS)

Feasible region:

(20.30) =
30
20 \
: \\
(40,0) = (50.0)
] 10 0 10 20 3I0 4 5 (31
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Simplex method

George Dantzig (1914 - 2005)
invented the simplex method
in 1947.

In 1954 Dantzig together
with Orchard Hays developed
the revised simplex algorithm.
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Simplex method

» Simplex demonstration
» https:/lyoutu.be/k9em_7B62987?si=XVchpO-RjaPbMgUf
> https://youtu.be/k9em_7B62987si=dgRTTLFmEuUFTiacS

» Simplex method performs an efficient search of the extreme points (i.e. bfs) of
the feasible region. The method usually starts from the bfs where all original
decision variables are zeros.

» Then it “greedily” (in the sense that the objective function value is getting
improved) moves from one extreme point (i.e. bfs) of the feasible region to an
adjacent bfs by changing one basic variable at a time.

» In the searching/moving procedure, the ratio test ensures that the basic solution
in each iteration remains feasible (i.e. satisfies all constraints). The method
ceases when no further improvement in the value of the objective function

» For any LP with m constraints, two bfs are said to be “adjacent” if their bases
have m — 1 basic variables in common.
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Example

> Solve: minz = — x; — 2x,
S.t. —le + X9 < 2
—x1 + ZXZ S 7
X1 < 3
X1, X2 >0
» Standard form: minz = — x; — 2x,
S.t. —le + x2+ = 2
—x1 + ZXZ+ =
x1+ = 3
X1, X, >0
» Each of the constraints has a variable.
> xg = ( ); an = ( );
» Hence bfs x = ( ) and the corresponding value of
7 =
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Example

» Finding an adjacent bfs to improve z:
(What an adjacent bfs?)

1. EXxpress every component of xg in terms of x :

2. Express z in equality form:

3. All OF coefficients for x are positive/negative, chose the one with most positive/negative
coefficient to enter basis:

To improve z chose , and let = 0.
3. To determine the limits of increase for solve:
Hence IS entering the basis and IS leaving the basis
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Example

» New values for components:
New bfs (xq,x,, )=( ) and z =
> Newxp = ( ) xn = ( )

» Express z and every component of xg in terms of xy:

» Can we approve z further? Some coefficients for x, are
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Example

» To improve z chose , and let = 0.

To determine the limits of increase of solve:

» New values for components:

» New bfs (x1,x5,%x3,%4,%5) = ( ) and z =
> New xp = ( ); xy = ( );
....and so on...
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