

Introduction to Optimisation:

Modifications of Simplex Method

Lecture 4

Lecture notes by Dr. Julia Memar and Dr. Hanyu Gu and with an acknowledgement to Dr.FJ Hwang and Dr.Van Ha Do

Example 2 – solve with Big M method

>
$$min z = 2x_1 + 3x_2 +$$
s.t. $\frac{1}{2}x_1 + \frac{1}{4}x_2$ = 4
$$x_1 + 3x_2 = 20$$

$$x_1 + x_2 = 10$$

$$x_1, x_2, \ge 0$$

Example 2 – solve with Big M method

Two-phase Simplex method

Phase I

- 1. Make sure all $rhs \ge 0$;
- 2. Add slack/subtract excess variables to make equality constraints;
- 3. For each constraint i without a slack add artificial variable a_i ;
- 4. Solve $\min w = \sum a_i$ with the modified constraints from step 3.

Two-phase Simplex method

Phase II

- \succ If $w_{opt} > 0$, then (I) is ______
- ightharpoonup If $w_{opt}=0$ and there are no a_i in x_B then
 - 1. _____
 - 2.
 - 3. _____
- ightharpoonup If $w_{opt}=0$ and there are a_i in x_B then
 - 1. _____
 - 2. _____
 - 3. _____

Example 3 (Solve with two-phase Simplex)

 $x_1, x_2 \ge 0$

Example 3

Example 4 (Solve with two-phase Simplex)

>
$$\max z = 4x_1 + 5x_2$$

s.t. $2x_1 + 3x_2 \le 6$
 $3x_1 + x_2 \ge 3$
 $x_1, x_2 \ge 0$

Example 4

- > Large-scale LP problems contain large amounts of data, and
- > Require even larger numbers of computations in each Simplex iteration
- ightharpoonup Consider min (or max) $z = c^T x$

s.t.
$$Ax = b$$
, $x \ge 0$,

For the chosen x_B , A, B, c^T, c_B^T can be obtained by After B^{-1} is calculated, we can calculate the tableau:

basis	x	$_{ m rhs}$
z	$\mathbf{c}_{\mathbf{B}}^{T}\mathbf{B}^{-1}\mathbf{A} - \mathbf{c}^{T}$ $= \widehat{\mathbf{c}}^{T}$	$\mathbf{c}_{\mathbf{B}}^T\mathbf{B}^{-1}\mathbf{b}$
x_{B}	$\mathbf{B}^{-1}\mathbf{A} = \widehat{\mathbf{A}}$	$\mathbf{B}^{-1}\mathbf{b}$ $= \widehat{\mathbf{b}}$

 \triangleright Decomposed tableau for $x^T = (x_N | x_B)$:

basis	$\mathbf{x}_{\mathbf{N}}$	$\mathbf{x}_{\mathbf{B}}$	$_{ m rhs}$
z	$\mathbf{c}_{\mathbf{B}}^T \mathbf{B}^{-1} \mathbf{N} - \mathbf{c}_{\mathbf{N}}^T$	0^T	$\mathbf{c}_{\mathbf{B}}^T\mathbf{B}^{-1}\mathbf{b}$
$\mathbf{x}_{\mathbf{B}}$	$\mathbf{B}^{-1}\mathbf{N}$	Ι	$\mathbf{B}^{-1}\mathbf{b}$

$$\triangleright$$
 For initial x_{B_0} $B_0 =$

and
$$A =$$

and
$$B_0^{-1} =$$

> The initial tableau:

basis	x_{N_0}	x_{B_0}	rhs
Z			
x_{B_0}			
κ_{B_0}			

For the next x_{B_1}

$$> B_1^{-1}(N_0|I) =$$

$$\succ c_{B_1}^T B_1^{-1} A - c^T =$$

basis	x_{N_0}	x_{B_0}	rhs
Z			
x_{B_1}			$B_1^{-1}b$

> Observations:

If $(x_{N_1}|x_{B_1})$ is not optimal, select the next x_{B_2}

$$> B_2^{-1}(N_0|I) =$$

$$> c_{B_2}^T B_2^{-1} A - c^T =$$

basis	x_{N_0}	x_{B_0}	rhs
Z			
x_{B_2}			$B_2^{-1}b$