

Introduction to Optimisation:

Sensitivity analysis

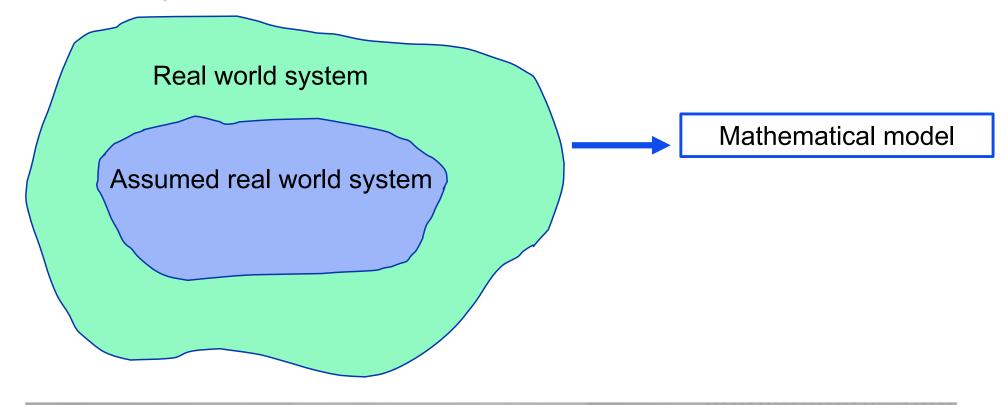
Lecture 7

Lecture notes by Dr. Julia Memar and Dr. Hanyu Gu and with an acknowledgement to Dr.FJ Hwang and Dr.Van Ha Do

Introduction

Mathematical Optimization modelling - some assumptions:

- Linearity of constraints and functions
- Data certainty
- Values of parameters



Introduction

Sensitivity analysis is a systematic study of how sensitive the LP's optimal solution is to (small) changes in the LP's parameters and it is presented to give answers to questions of the following forms: $CF: \frac{1}{2} = C^{T} \Sigma$

- 1. If the objective function changes, how does the optimal solution change?
- 2. If the amount of resources available changes, how does the optimal solution change?
- 3. If an additional constraint is added to the LP, how does the optimal solution change?

Sensitivity analysis may allow to avoid re-solving an LP if the change in parameters does not imply the change in optimal basis.

Introduction

 \triangleright Consider min $(or max)z = c^Tx$

s.t.
$$Ax = b$$
, $x \ge 0$,

where $b \ge 0$, and optimal bfs $|x^{*T} = (x_N^T | x_B^T)$ and the optimal tableau:

1

basis	X _N C	x_B	rhs	OR	basis	$\mathbf{x}_{\mathbf{N}_0}$	$\mathbf{x}_{\mathbf{B}_0}$	rhs
<i>z</i> *	$\mathbf{c}_{\mathbf{B}}^T\mathbf{B}^{-1}\mathbf{N}-\mathbf{c}_{\mathbf{N}}^T$	0^T	$\mathbf{c}_{\mathbf{B}}^T\mathbf{B}^{-1}\mathbf{b}$		z^*	$egin{aligned} \mathbf{c}_{\mathbf{B}}^T \mathbf{B}^{-1} \mathbf{N}_0 - \mathbf{c}_{\mathbf{N}_0}^T \end{aligned}$	$\mathbf{c}_{\mathbf{B}}^T\mathbf{B}^{-1} - \mathbf{c}_{\mathbf{B}_0}^T$	$\mathbf{c}_{\mathbf{B}}^T\mathbf{B}^{-1}\mathbf{b}$
x_B	${f B}^{-1}{f N}$	I	${f B}^{-1}{f b}$		x_B	${f B}^{-1}{f N}_0$	\mathbf{B}^{-1}	$\mathrm{B}^{-1}\mathrm{b}$

From the tableau:
$$c_N^T = c_B^T B^{-1} N - c_N^T \le (or \ge) 0^T;$$

$$x_B = B^{-1} b \ge 0;$$

(1)

optimality condition

$$x_B = B^{-1}b \ge 0;$$

(2) | feasibility conditions

•
$$x_N = 0$$
;

$$z^* = c_B^T B^{-1} b$$

Non-basic variable:

 \triangleright Let x_j be non-basic variable in optimal *bfs*, and change c_j , $j \in N$:

$$c_j' = c_j + \Delta.$$

➤ How will it affect the solution?

$$c'_{j} = c_{B}^{T} B^{-1} A_{j} - c'_{j} =$$

Fearibility? No Value OF? NO optimality? Yes

$$= c_{\mathbf{B}}^{\mathsf{T}} \mathbf{B}^{\mathsf{T}} \mathbf{A}_{\mathsf{j}} - (c_{\mathsf{j}} + \Delta) = c_{\mathbf{B}}^{\mathsf{T}} \mathbf{B}^{\mathsf{T}} \mathbf{A}_{\mathsf{j}} - c_{\mathsf{j}} - \Delta = c_{\mathsf{j}}^{\mathsf{T}} - \Delta$$

The current basis is still optimal if $c'_i \leq 0 (\geq 0)$, hence

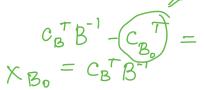
$$c_i' \leq 0 (\geq 0)$$
, hence

Solve for Δ_{\min} where b = 0 Cylin $\partial_{\mu} \Delta_{\min} \Delta_{\mu} \Delta_{\mu} - (\lambda_{N} | \lambda_{B})$ and the optimal advisor.

OR

basis	X _N C	$\mathbf{x}_{\mathbf{b}}$	hs
z*	$\mathbf{c}_{\mathbf{B}}^T\mathbf{B}^{-1}\mathbf{N}-\mathbf{c}_{\mathbf{N}}^T$	0^T	$\mathbf{c}_{\mathbf{B}}^T\mathbf{B}^{-1}\mathbf{b}$
x_B	${f B}^{-1}{f N}$	Ι	$\mathbf{B}^{-1}\mathbf{b}$

basis	$\mathbf{x}_{\mathbf{N}_0}$	$\mathbf{x}_{\mathbf{B}_0}$	${ m rhs}$	
z*	$\mathbf{c}_{\mathbf{B}}^T\mathbf{B}^{-1}\mathbf{N}_0 - \mathbf{c}_{\mathbf{N}_0}^T$	$\mathbf{c}_{\mathbf{B}}^T\mathbf{B}^{-1} - \mathbf{c}_{\mathbf{B}_0}^T$	$\mathbf{c}_{\mathbf{B}}^T\mathbf{B}^{-1}\mathbf{b}$	
x_B	$\mathrm{B}^{-1}\mathrm{N}_0$	$ m B^{-1}$	${f B}^{-1}{f b}$	



Non-basic variable – an example

$$\min z = -x_1 - 2x_2$$
s.t. $-2x_1 + x_2 + x_3 = 2$

$$-x_1 + 2x_2 + x_4 = 7$$

$$x_1 + 1.5x_2 + x_5 = 3$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

		B	B	au.	V	/ N/	
	basis	x_1	x_2	x_3	x_4	x_{5}	rhs
	z	0	0	0	-1	-2	-13
•	x_2	0	1	0	$\frac{1}{2}$	$\frac{1}{2}$	5
	$\cdot x_1$	1	0	0	0	1	3
	x_3	0	0	1	$-\frac{1}{2}$	$\frac{3}{2}$	3

From the final tableau: $c_N^T = \langle -1, -2 \rangle$ $c_N^T = \langle -1, -2 \rangle$

$$B^{-1}N = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ 0 & 1 \\ -\frac{1}{2} & \frac{3}{2} \end{pmatrix}$$

$$B^{-1} = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 \\ \frac{1}{2} & -\frac{1}{2} & \frac{3}{2} \end{pmatrix}$$

$$B^{-1}b = \begin{pmatrix} 5 \\ 3 \\ 3 \end{pmatrix}$$

but
$$\begin{pmatrix} 2 \\ 7 \\ 3 \end{pmatrix}$$

From the final tableau:
$$c_N^T = \langle -1, -2 \rangle$$
 $c_N^T = \langle -1, -2 \rangle$ $c_N^$

Non-basic variable – an example

$$c_4 = 0$$
; assume $c_4' = \Delta + 0$.

Perform the sensitivity analysis:
$$c'_{4} = c_{6} B A_{4} - c_{4} = c_{6} B A_{4} - c$$

For
$$c_4' \le 0$$
, $\rightarrow \hat{c}_4 - \Delta \le 0$

$$-1 - \Delta \le 0$$

$$\Delta \ge -1$$

Final tableau:

basis	x_1	x_2	x_3	x_4	x_5	rhs
z	0	0	0	-1	-2	-13
x_2	0	1	0	$\frac{1}{2}$	$\frac{1}{2}$	5
x_1	1	0	0	0	1	3
x_3	0	0	1	$-\frac{1}{2}$	$\frac{3}{2}$	3

Basic variable:

- Suppose that $c_B' = c_B + \Delta_{c_{B'}}$ $x_B = B^{-1}b \ge 0$;
- How will it affect the solution?

$$c_B = 0$$
, hence

From the tableau. $c_N^T = c_B^T B^{-1} N - c_N^T \le (or \ge) 0^T;$ with max op

ution?
$$x_N = 0;$$
 (3)
$$z^* = c_B^T B^{-1} b$$
 yalw of DF (4)

$$c'_{N} = c_{B}^{T}B^{-1}N - c_{N}^{T}$$
 =, hence for non-basic components

$$c_{j}' = \begin{bmatrix} c_{B} & B & N - c_{N} & + A_{c_{B}} & B & N - c_{N} \\ c_{j}' & + A_{c_{B}} & A_{c_{B}} \\ c_{j}' & + A_{c_{B}$$

solve system of Inequalities

$$\hat{C}_{j} = \hat{C}_{j} + \Delta_{c_{B}} B^{-1} A_{j}$$
 for each $x_{j} \in x_{N}$
UTS

$$\hat{C}' = C_B^{T} B^{-1} A - C^{T} =$$

$$= (c_{B}^{T} B^{T} B | c_{B}^{T} B^{T} N) - (c_{B}^{T} | c_{N}^{T}) =$$

$$= (c_{B}^{T} - c_{B}^{T} | c_{B}^{T} B^{T} N - c_{N}^{T}) =$$

$$= (0^{T} | c_{N}^{T})$$

$$= x_{B} | x_{N}$$

$$x_3$$
 is basic $C = \begin{pmatrix} -1 \\ -2 \\ 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$

Basic variable - an example

Final tableau:

Change in the right-hand side

Change in rhs affects: 1) Fearibility $x_B = B^{-1} \frac{\ell}{2} \rightarrow YeS$ 2) OF value : $2 = C_B^{-1} B^{-1} \frac{\ell}{2} \rightarrow YeS$

$$\triangleright$$
 Let $b' = b + \Delta_b$

 \succ How will it affect the solution? $x'_{B} \geq 0$, hence

$$x_{B}' = B^{-1}B' = B^{-1}B + B^{-1}\Delta_{G} = x_{B} + B^{-1}\Delta_{G} \ge 0$$

How will it affect the optimal objective function value?

$$2^* = c_B^T B^T \theta' = c_B^T B^T \theta + c_B^T B^T \Delta_{\theta}$$

$$\theta + \Delta_{\theta}$$
1170

Change in the right-hand side

Example - let's change the second constraint by Δ :

$$b' = b + \Delta_b = b + (0, \Delta, 0)^T$$

$$= \begin{pmatrix} 2 \\ 1 \\ 2 \\ 4 \end{pmatrix} + \begin{pmatrix} 0 \\ \Delta \\ 0 \\ 0 \end{pmatrix}$$
To satisfy x_P'

$$x'_B = \beta'' \beta'' =$$

Final tableau:

basis	x_1	x_2	x_3	x_4	x_5	rhs
z	0	0	0	-1	-2	-13
x_2	0	1	0	$\frac{1}{2}$	$\frac{1}{2}$	5
x_1	1	0	0	0	1	3
x_3	0	0	1	$-\frac{1}{2}$	$\frac{3}{2}$	3

$$= \beta^{-1} \beta + \beta^{-1} \Delta_{k} =$$

$$= \begin{pmatrix} 5 \\ 3 \\ 3 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 0 \\ 1 & -1/2 & 3/2 \end{pmatrix} \begin{pmatrix} 0 \\ \Delta \\ 0 \end{pmatrix} = \begin{pmatrix} 5 \\ 3 \\ 3 \end{pmatrix} + \begin{pmatrix} 1/2 \Delta \\ 0 \\ -1/2 \Delta \end{pmatrix} \begin{pmatrix} 5 + 1/2 \Delta \\ 0 \\ 3 \end{pmatrix}$$

$$= \begin{pmatrix} 5 \\ 3 \\ 3 \end{pmatrix} + \begin{pmatrix} 1/2 \Delta \\ 0 \\ -1/2 \Delta \end{pmatrix} \begin{pmatrix} 1/2 \Delta \\ 3/2 \Delta \end{pmatrix}$$

$$x_{8} \geqslant 0 \Rightarrow \begin{cases} 5 + \frac{1}{2}\Delta \geqslant 0 \\ 3 - \frac{1}{2}\Delta \geqslant 0 \end{cases} \Rightarrow \begin{cases} \Delta \geqslant -10 \\ \Delta \leq 6 \end{cases} \Rightarrow \begin{cases} x_{3} = 3 \end{cases} \Rightarrow \begin{cases} 10 \leq \Delta \leq 6 \end{cases} \Rightarrow \begin{cases} 10 \leq \Delta \leq A \end{cases}$$

The current Basis is optimal and feas.

$$x_{1}^{1} = 5 + \frac{1}{2} \Delta$$
 $x_{1}^{1} = 3$
 $x_{2}^{2} = 3 - \frac{1}{2} \Delta$

$$2^{*} = 2^{*} + C_{B}^{T} B^{-1} \Delta_{6} = -13 + (0, -1, -2) \begin{pmatrix} 0 \\ \Delta \\ 0 \end{pmatrix} = -13 - \Delta$$

Change in a column of a constraint matrix

- \triangleright Let $A'_j = A_j + \Delta_{A_j}$
- Fig. 1. If the changed column corresponds to a non-basic variable, then the change will affect

$$X_{B} = B^{-1} G - Feas \rightarrow NO$$

$$C'_{j} = C_{B}^{T}B^{-1}A'_{j} - C_{j} = C_{B}^{T}B^{-1}A_{j} - C_{j} + C_{B}^{T}B^{-1}A_{j}$$
Hence
$$= C'_{j} + C'_{b}B^{-1}A_{j}$$

$$= C'_{j} + C'_{j}B^{-1}A_{j}$$

$$= C'_{j} + C'_{j}B^{-1}A_{j}$$

$$= C'_{j} + C'_{j}B^{-1}A_{j}$$

$$= C'_{j} + C'_{j}B^{-1}A_{j}$$

$$= C'_{j} + C'_{j}B^{-$$

Change in a column of a constrair

Example - let's change a_{35} (coefficient for x_5) b

$$A_5' = A_5 + \Delta_{A_j} = A_5 + (0, 0, \Delta)^T$$

Fina

$$\min z = -x_1 - 2x_2$$
s.t. $-2x_1 + x_2 + x_3 = 2$

$$-x_1 + 2x_2 + x_4 = 7$$

$$x_1 + 1.5x_2 + x_5 = 3$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

row 3	, 60	lum h 5	7	45		basis	x_1	x_2	x_3	x_4	x_5	$_{ m rhs}$
To sati	isfy c_j	$\leq 0,$ $A_{5} =$	/0\		(0)	z	0	0	0	-1	-2	-13
n -		· n ' =	6	4	0	x_2	0	1	0	$\frac{1}{2}$	$\frac{1}{2}$	5
H 5 -	(1 42		'	\ \ \	x_2 x_1	1	0	0	0	1	3
	11		()		(4)	x_3	0	0	1	$-\frac{1}{2}$	$\frac{3}{2}$	3

$$\hat{C}_{S}' = \hat{C}_{S} + \hat{C}_{B}^{T} B^{T} \Delta_{AS} =$$

$$= -2 + (0, -1, -2) \begin{pmatrix} 0 \\ 0 \end{pmatrix} = -2 - 2\Delta \leq 0$$

$$\text{if } \Delta \geq -1$$

Change in a column of a constraint matrix

- If the changed column corresponds to a basic variable, then we will have to re-calculate B^{-1} . Let $B' = B + \Delta e_i e_k^T$
- Sherman-Morrison formula:

Suppose $A \in \mathbb{R}^{n \times n}$ is an invertible matrix, and $u, v \in \mathbb{R}^n$ are column vectors. Then

$$(A + uv^T)^{-1} = A^{-1} - \frac{A^{-1}uv^TA^{-1}}{1+v^TA^{-1}u}$$
 if and only if $1 + v^TA^{-1}u \neq 0$

$$(B')^{-1} = B^{-1} - \frac{\Delta}{1 + \Delta B_{kj}^{-1}} B_{:j}^{-1} B_{k:j}^{-1}$$

- Feasibility: $(B')^{-1}b \ge 0$
- Optimality: $c_R^T(B')^{-1}N c_N \le 0$

$$\triangleright$$
 Example: $max z = 5x_1 + 4x_2$

$$X_{B_0} = (S_1 S_2)$$

CB = (0,0)

s.t.
$$x_1 + x_2 \le 10$$

$$x_1 \leq 4$$

$$x_1, x_2 \ge 0$$

Optimal tableau:

$$x_B = \langle x_2 x_1 \rangle$$

$$c_B^T B^{-1} = 44.1$$

basis	x_1	x_2	s_1	s_2	$_{ m rhs}$
z	0	0	4	1	44
x_2	0	1	1	-1	6
x_1	1	0	0	1	4

$$\hat{C}_{xBo} = C_B^T B^{-1} B_o - C_{Bo} = C_B^T B^{-1}$$

$$I$$

if BFS satisfies hew constraint, then no change mag

does does not satisfy the new

Now add another constraint:

nother constraint:
$$\max z = 5x_1 + 4x_2$$
s.t. $x_1 + x_2 \le 10$
 $x_1 \le 4$
 $x_1 + 3x_2 \le 15$ (*)
 $x_1, x_2 \ge 0$

- > The current optimal $x_B = \begin{pmatrix} 4 \\ 6 \end{pmatrix}$ constraint
- > New optimal value $z^* \leq z^*$ as new few. Tegrowther
- > Hence we need to find new optimal solution:
 - (*): $x_1 + 3x_2 + s_3 = 15$ s_3 is another **basic** variable
 - To add s_3 to basis, need to present (*) in a canonical form (that is need to eliminate x_1 and x_2)

$$(x_{g'}) = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \rightarrow$$

- > Hence we need to find new optimal solution:
 - (*): $x_1 + 3x_2 + s_3 = 15$ s_3 is another
 - To add s_3 to basis, need to present (*) in a canonical form (that is need to eliminate x_1 and x_2):

From Tableau
$$x_1 = 6^{-S_1 + S_2}$$

 $x_2 + S_1 - S_2 = 6$ \Rightarrow (*)
 $x_1 + S_2 = 4$

basis	x_1	x_2	s_1	s_2	rhs
\overline{z}	0	0	4	1	44
x_2	0	1	1	-1	6
x_1	1	0	0	1	4

$$4-5_{2} + 18-35_{1} + 35_{2} + 5_{3} = 15$$

$$3x_{2}$$

$$5_{3}-35_{1}+25_{2} = -7$$

>	New tal	bleau:	5, [S 2	S ₃	RHS	
2	0	O	4		0	44	
χ_2	0	1	1		0	C	
α _ι	1	0	0	1	0	4	
53	0	0	-3	2	1	-7 40	_, S3 leaving
2	0	6	0	1+8/3	4/3	44-3	$R_b = R_o - 4R_3$
X2	0	١	0	- 1/3	1/3	11/3	$R_1 = R_1 - R_3$
\mathbf{x}	1	O	0	1	0	4	$R_2 = K_2$
S	0	0	1	- 2/2	- 1/2	7	$R_3 = R_3 (-3)$
ÜÜUT				ع) د	24 ,	1 3	» (4) X1
	opt.	as Cn	>0;	군" = :	3	14 2	$= \langle \frac{1}{2} \rangle x_2$

Addition of a new variable

Assume we add a new variable x_j with objective function coefficient c_j and a constraint column A_i

1. Calculate

- > If $c_j \leq 0$ (or ≤ 0), put x_j in x_j , and x_j does not change opt. cond. Satisfied
- \triangleright Otherwise x_j enters basis and the optimal bfs will change

Addition of a new variable

basis	x_1	x_2	s_1	s_2	$_{ m rhs}$
z	0	0	4	1	44
x_2	0	1	1	-1	6
x_1	1	0	0	1	4

Example: let's add another variable:

$$max z = 5x_1 + 4x_2 + 8x_3$$

s.t.
$$x_1 + x_2 + x_3 \le 10$$

 $x_1 + 2x_3 \le 4$
 $x_1, x_2, x_3 \ge 0$

$$ho$$
 $c_3 = \cite{2}$ $A_3 = \cite{2}$ and

>
$$c_3 =$$
 $A_3 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and $c_3 = c_B B^1 A_3 - c_3 =$ $c_4 + c_5 + c_$

 \succ The current $x_B = (x_2 x_1)$

 \triangleright Calculating $A_3 = B^{-1} A_3$

$$=\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}\begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$

curren Bss not opt

Addition of a new variable

New tableau:

	basis	x_1	x_2	${}^{\prime}s_1$	s_2	α_3	RHS	
	z	0	0	4	1	-2	44	
	x_2	0	1	1	-1	1-	6	
	x_1	1	0	0	1	2	4	→ .
-	7		0	4	2	0	48	$R_0 = R_0 + R_2$
	\mathfrak{T}_2	1/2	1		-1/2	b	8	R, = R,+R!
	\mathfrak{X}_3	1/2	0	0	1/2	١	2	$R_2' = \frac{R_2}{2}$

$$X^{*} = x_{2} \setminus g$$

$$max \ z = 10x_1 + 7x_2 + 6x_3$$
s.t. $3x_1 + 3x_2 + x_3 \le 36$
Cb. = (0, 0, 0) $x_1 + x_2 + 2x_3 \le 32$
Bo Bo Bo $2x_1 + x_2 + x_3 \le 22$
 $x_1, x_2, x_3 > 0$

basis

 x_3

$$X_{B_0} = (s_1 s_2 s_3)$$

$$X_{B_0} = (x_2 s_2 x_3)$$

R

$$x_3$$

$$s_2$$
 s

0

$$s_2$$
 s_3

14

 $x_1, x_2, x_3 \ge 0$

$$c_N^T = (3, 1)$$

$$\begin{bmatrix} x_2 & 1 \\ s_2 & -2 \end{bmatrix}$$

 x_2

0

0

$$\mathbf{\hat{\delta}} = B^{-1}b = \begin{pmatrix} 14 \\ 2 \\ 8 \end{pmatrix}$$

$$B^{-1}N = \begin{pmatrix} -2 & -3 \\ -2 & 2 \end{pmatrix}$$

$$B^{-1} = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 1 & -3 \end{pmatrix}$$

By how much can the objective coefficient of x_1 be changed without altering the optimal basis?

basis	x_1	x_2	x_3	s_1	s_2	s_3	rhs
z	3	0	0	1	0	5	146
x_2	1 -2 1	1	0	1	0	-1	14
s_2	-2	0	0	1	1	-3	2
x_3	1	0	1	-1	0	2	8

1.
$$\infty_1$$
 is non-basic

$$\hat{C}_1' = \hat{C}_1 - \Delta = 3 - \Delta \ge 0 \implies \text{so } \times_B \text{ is still optimal}$$

$$A \le 3$$

By how much can the objective coefficient of x₂ be changed without altering the optimal basis?

$$C_{2} = C_{2} + \Delta$$

basis

$$x_1$$
 x_2
 x_3
 s_1
 s_2
 s_3
 rhs

 z
 3
 0
 0
 1
 0
 5
 146

 x_2
 1
 1
 0
 1
 0
 -1
 14

 s_2
 -2
 0
 0
 1
 1
 -3
 2

 x_3
 1
 0
 1
 -1
 0
 2
 8

$$C_{B}^{1} = C_{B} + \Delta_{C_{B}} = C_{S_{A}} \begin{pmatrix} A \\ O \\ C_{A} \end{pmatrix} + \begin{pmatrix}$$

$$\begin{cases}
3+\Delta \ge 0 \\
1+\Delta \ge 0
\end{cases}
\rightarrow
\begin{cases}
\Delta \ge -3 \\
\Delta \ge -1
\end{cases}
\rightarrow \text{ if } -1 \le \Delta \le 5
\end{cases}$$

$$5-\Delta \ge 0$$

$$\Delta \le 5$$
current Bfs is still optimal

$$\hat{C}_{N}^{'T} = C_{B}^{'T}B^{-1}N - C_{N}^{T} = (C_{B}^{T} + \Delta^{T})B^{-1}N - C_{N}^{T} =$$

$$= C_{B}^{T}B^{-1}N - C_{N}^{T} + \Delta^{T}B^{-1}N =$$

$$= C_{N}^{T} + \Delta^{T}B^{-1}N \geqslant 0 \quad opt. \quad condition$$
for max

➤ By how much can the *rhs* of the first constraint be changed without altering the optimal basis?

basis	x_1						rhs
z	3	0	0	1	0	5	146
x_2	1	1	0	1	0	-1	14
s_2	-2	0	0	1	1	-3	2
x_3	1 -2 1	0	1	-1	0	2	8

$$\chi_{B}^{1} = \zeta + \begin{pmatrix} \Delta \\ 0 \\ 0 \end{pmatrix}$$

$$\chi_{B}^{1} = \chi_{B} + \beta^{-1} \begin{pmatrix} \Delta \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 14 \\ 2 \\ 8 \end{pmatrix} + \begin{pmatrix} 1 & 0 & -1 \\ 1 & 1 & -3 \\ -1 & 0 & 2 \end{pmatrix} \begin{pmatrix} \Delta \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 14 + \Delta \\ 2 + \Delta \\ 8 - \Delta \end{pmatrix} \geqslant 0 \Rightarrow \begin{pmatrix} x_{2} = 14 + \Delta \\ x_{2} = 2 + \Delta \geqslant 0 \Rightarrow x_{3} = 8 - \Delta \Rightarrow 0 \Rightarrow x_{3} = 2 - \Delta \Rightarrow 0 \Rightarrow x_{$$

➢ By how much can the coefficient of x₁ in the first constraint be changed without altering the optimal basis?

basis	x_1	x_2	x_3	s_1	s_2	s_3	rhs
z	3	0	0	1	0	5	146
x_2	1	1	0	1	0	-1	14
s_2	-2	1 0 0	0	1	1	-3	2
x_3	1	0	1	-1	0	2	8

$$X_{1}$$
 is non basic \rightarrow only C_{1} will be affected.

$$A_{1}' = A_{1} + \begin{pmatrix} \Delta \\ 0 \\ 0 \end{pmatrix}$$

$$\hat{C}_{1}' = \hat{C}_{1} + C_{B}^{T} B^{-1} \begin{pmatrix} \Delta \\ 0 \\ 0 \end{pmatrix} = 3 + (1 \ 0 \ 5) \begin{pmatrix} \delta \\ 0 \\ 0 \end{pmatrix} = 3 + \Delta \geqslant 0$$

• Challenge add a constraint $x_2 - x_3 \le 10$

$$A_{4} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$$