

Introduction to Optimisation:

Sensitivity analysis

Lecture 7

Lecture notes by Dr. Julia Memar and Dr. Hanyu Gu and with an acknowledgement to Dr.FJ Hwang and Dr.Van Ha Do

Introduction

Mathematical Optimization modelling - some assumptions:

- Linearity of constraints and functions
- Data certainty
- Values of parameters

Introduction

Sensitivity analysis is a systematic study of how sensitive the LP's optimal solution is to (small) changes in the LP's parameters and it is presented to give answers to questions of the following forms:

- 1. If the objective function changes, how does the optimal solution change?
- 2. If the amount of resources available changes, how does the optimal solution change?
- 3. If an additional constraint is added to the LP, how does the optimal solution change?

Sensitivity analysis may allow to avoid re-solving an LP if the change in parameters does not imply the change in optimal basis.

Introduction

 \triangleright Consider min (or max)z = $c^T x$

s.t.
$$Ax = b$$
, $x \ge 0$,

where $b \ge 0$, and optimal bfs $|x^{*T} = (x_N^T | x_B^T)$ and the optimal tableau:

basis	x_N	x_B	$_{ m rhs}$	
z^*	$\mathbf{c}_{\mathbf{B}}^T\mathbf{B}^{-1}\mathbf{N}-\mathbf{c}_{\mathbf{N}}^T$	0^T	$\mathbf{c}_{\mathbf{B}}^T\mathbf{B}^{-1}\mathbf{b}$	
x_B	${f B}^{-1}{f N}$	I	$\mathrm{B}^{-1}\mathrm{b}$	

OR	basis	$\mathbf{x}_{\mathbf{N}_0}$	$\mathbf{x}_{\mathbf{B}_0}$	rhs
	z^*	$\mathbf{c}_{\mathbf{B}}^T\mathbf{B}^{-1}\mathbf{N}_0 - \mathbf{c}_{\mathbf{N}_0}^T$	$\mathbf{c}_{\mathbf{B}}^T\mathbf{B}^{-1} - \mathbf{c}_{\mathbf{B_0}}^T$	$\mathbf{c}_{\mathbf{B}}^T\mathbf{B}^{-1}\mathbf{b}$
	$x_{\mathbf{B}}$	$\mathrm{B}^{-1}\mathrm{N}_0$	${f B}^{-1}$	${f B}^{-1}{f b}$

> From the tableau:

$$c_N^T = c_B^T B^{-1} N - c_N^T \le (or \ge) 0^T;$$

$$x_B = B^{-1}b \ge 0;$$

$$x_N=0$$
;

$$z^* = c_B^T B^{-1} b$$

$$(2) \int_{-\infty}^{\infty} f \epsilon$$

Non-basic variable:

► Let x_j be non-basic variable in optimal *bfs*, and change c_j , $j \in N$:

$$c_i' = c_i + \Delta.$$

> How will it affect the solution?

$$c_j' = c_B^T B^{-1} A_j - c_j' =$$

The current basis is still optimal if

$$c'_j \leq 0 (\geq 0)$$
, hence

Solution stability:

Non-basic variable – an example

Final tableau:

$$\min z = -x_1 - 2x_2$$
s.t. $-2x_1 + x_2 + x_3 = 2$

$$-x_1 + 2x_2 + x_4 = 7$$

$$x_1 + 1.5x_2 + x_5 = 3$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

basis	x_1	x_2	x_3	x_4	x_5	rhs
z	0	0	0	-1	-2	-13
x_2	0	1	0	$\frac{1}{2}$	$\frac{1}{2}$	5
x_1	1	0	0	0	1	3
x_3	0	0	1	$-\frac{1}{2}$	$\frac{3}{2}$	3

 \triangleright From the final tableau: $c_N^T =$

$$B^{-1}N =$$

$$B^{-1}b =$$

$$c_B^T B^{-1} =$$

(in c_B^T the order is important)

$$B^{-1} =$$

Non-basic variable – an example

Final tableau:

$$c_4 = 0$$
; assume $c'_4 = \Delta + 0$.

Perform the sensitivity analysis:

$$c_4' =$$

basis	x_1	x_2	x_3	x_4	x_5	rhs
z	0	0	0	-1	-2	-13
x_2	0	1	0	$\frac{1}{2}$	$\frac{1}{2}$	5
x_1	1	0	0	0	1	3
x_3	0	0	1	$-\frac{1}{2}$	$\frac{3}{2}$	3

For
$$c_4' \leq 0$$
,

Basic variable:

- \succ Suppose that $c_B' = c_B + \Delta_{c_B}$,
- ➤ How will it affect the solution?

$$c_B =$$
 , hence

$$c'_N =$$

, hence for non-basic components

$$c'_j =$$

The current basis is still optimal if $c'_i \leq 0 (\geq 0)$, hence

$$c_j' \le 0 (\ge 0)$$
, hence

Basic variable - an example

$$c_3 = 0$$
; assume $c_3' = \Delta + 0$.

Hence

$$c_B^{\prime T} = c_B^T + \Delta_{c_B}$$
 and $\Delta_{c_B} = (\mathbf{0}, \mathbf{0}, \Delta)^T$

$$c_N^{\prime T} =$$

Final tableau:

basis	x_1	x_2	x_3	x_4	x_5	rhs
z	0	0	0	-1	-2	-13
x_2	0	1	0	$\frac{1}{2}$	$\frac{1}{2}$	5
x_1	1	0	0	0	1	3
x_3	0	0	1	$-\frac{1}{2}$	$\frac{3}{2}$	3

Hence

Change in the right-hand side

Change in rhs affects: 1)

2)

$$\triangleright$$
 Let $b' = b + \Delta_b$

ightharpoonup How will it affect the solution? $x'_B \ge 0$, hence

➤ How will it affect the optimal objective function value?

Change in the right-hand side

Example - let's change the second constraint by Δ :

$$\mathbf{b}' = \mathbf{b} + \Delta_{\mathbf{b}} = \mathbf{b} + (\mathbf{0}, \Delta, \mathbf{0})^T$$

To satisfy $x'_B \geq 0$,

$$x'_B =$$

Final tableau:

b	asis	x_1	x_2	x_3	x_4	x_5	rhs
	z	0	0	0	-1	-2	-13
	x_2	0	1	0	$\frac{1}{2}$	$\frac{1}{2}$	5
	x_1	1	0	0	0	1	3
	x_3	0	0	1	$-\frac{1}{2}$	$\frac{3}{2}$	3

Change in a column of a constraint matrix

- \triangleright Let $A'_j = A_j + \Delta_{A_j}$
- ➤ If the changed column corresponds to a non-basic variable, then the change will affect

Hence

Change in a column of a constraint matrix

Example - let's change a_{35} (coefficient for x_5) by Δ :

$$A_5' = A_5 + \Delta_{A_j} = A_5 + (0, 0, \Delta)^T$$

To satisfy $c_j' \leq 0$,

Final tableau:

basis	x_1	x_2	x_3	x_4	x_5	$_{ m rhs}$
z	0	0	0	-1	-2	-13
x_2	0	1	0	$\frac{1}{2}$	$\frac{1}{2}$	5
x_1	1	0	0	0	1	3
x_3	0	0	1	$-\frac{1}{2}$	$\frac{3}{2}$	3

Change in a column of a constraint matrix

- If the changed column corresponds to a basic variable, then we will have to re-calculate B^{-1} . Let $B' = B + \Delta e_i e_k^T$
- Sherman-Morrison formula:

Suppose $A \in \mathbb{R}^{n \times n}$ is an invertible matrix, and $u, v \in \mathbb{R}^n$ are column vectors. Then

$$(A + uv^T)^{-1} = A^{-1} - \frac{A^{-1}uv^TA^{-1}}{1 + v^TA^{-1}u}$$
 if and only if $1 + v^TA^{-1}u \neq 0$

$$(B')^{-1} = B^{-1} - \frac{\Delta}{1 + \Delta B_{kj}^{-1}} B_{:j}^{-1} B_{k:}^{-1}$$

- Feasibility: $(B')^{-1}b \ge 0$
- Optimality: $c_B^T(B')^{-1}N c_N \le 0$

> **Example:** $max z = 5x_1 + 4x_2$

s.t.
$$x_1 + x_2 \le 10$$

$$x_1 \leq 4$$

$$x_1, x_2 \ge 0$$

> Optimal tableau:

$$x_B =$$

$$c_B^T B^{-1} =$$

basis	x_1	x_2	s_1	s_2	$_{ m rhs}$
z	0	0	4	1	44
x_2	0	1	1	-1	6
x_1	1	0	0	1	4

Now add another constraint:

$$max z = 5x_1 + 4x_2$$

s.t. $x_1 + x_2 \le 10$
 $x_1 \le 4$
 $x_1 + 3x_2 \le 15$
 $x_1, x_2 \ge 0$

 \triangleright The current optimal $x_B =$ constraint

does/does not satisfy the new

- New optimal value
- > Hence we need to find new optimal solution:
 - (*): $x_1 + 3x_2 + s_3 = 15$ s_3 is another
 - To add s_3 to basis , need to present (*) in a canonical form (that is need to eliminate x_1 and x_2)

- > Hence we need to find new optimal solution:
 - (*): $x_1 + 3x_2 + s_3 = 15$ s_3 is another
 - To add s_3 to basis, need to present (*) in a canonical form (that is need to eliminate x_1 and x_2):

New tableau:

Addition of a new variable

 \blacktriangleright Assume we add a new variable x_j with objective function coefficient c_j and a constraint column A_j

$$ightharpoonup$$
 If $c_j \leq 0$ (or ≤ 0), put x_j in , and does not change

 \triangleright Otherwise x_i enters and the optimal *bfs* will

Addition of a new variable

Example: let's add another variable:

$$max z = 5x_1 + 4x_2 + 8x_3$$
s.t.
$$x_1 + x_2 + x_3 \le 10$$

$$x_1 + 2x_3 \le 4$$

$$x_1, x_2, x_3 \ge 0$$

$$ightharpoonup c_3 = A_3 =$$
 and $c_3 =$

$$A_3 =$$

$$c_3$$
 =

 \triangleright The current $x_B =$

is/is not optimal and x_3

 \triangleright Calculating $A_3 =$

Addition of a new variable

New tableau:

> Consider

$$\max z = 10x_1 + 7x_2 + 6x_3$$

$$s.t. \quad 3x_1 + 3x_2 + x_3 \le 36$$

$$x_1 + x_2 + 2x_3 \le 32$$

$$2x_1 + x_2 + x_3 \le 22$$

$$x_1, x_2, x_3 \ge 0$$

Optimal tableau:

basis	x_1	x_2	x_3	s_1	s_2	s_3	rhs	$c_{T}^{T} =$
z	3	0	0	1	0	5	146	c_N –
x_2	1 -2 1	1	0	1	0	-1	14	$c_{R}^{T}B^{-1} =$
s_2	-2	0	0	1	1	-3	2	c_BD –
x_3	1	0	1	-1	0	2	8	

$$B^{-1}N =$$

$$B^{-1}b =$$

$$B^{-1} =$$

By how much can the objective coefficient of x_1 be changed without altering the optimal basis?

basis	x_1	x_2	x_3	s_1	s_2	s_3	rhs
z		0					146
x_2	1	1	0	1	0	-1	14
x_2 s_2	-2	0	0	1	1	-3	2
x_3	1 -2 1	0	1	-1	0	2	8

▶ By how much can the objective coefficient of x₂ be changed without altering the optimal basis?

basis	x_1	x_2	x_3	s_1	s_2	s_3	rhs
z	3	0	0	1	0	5	146
x_2	1	1 0 0	0	1	0	-1	14
s_2	-2	0	0	1	1	-3	2
x_3	1	0	1	-1	0	2	8

➤ By how much can the *rhs* of the first constraint be changed without altering the optimal basis?

basis							rhs
z	3	0	0	1	0	5	146
x_2	1	1	0	1	0	-1	14
x_2 s_2	-2	0	0	1	1	-3	2
x_3	1 -2 1	0	1	-1	0	2	8

▶ By how much can the coefficient of x₁ in the first constraint be changed without altering the optimal basis?

basis	x_1	x_2	x_3	s_1	s_2	s_3	rhs
z	3	0	0	1	0	5	146
x_2	1	1 0 0	0	1	0	-1	14
s_2	-2	0	0	1	1	-3	2
x_3	1	0	1	-1	0	2	8